首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
《Composite Interfaces》2013,20(7-9):631-646
Unidirectional isora fibre reinforced polyester composites were prepared by compression moulding. Isora is a natural bast fibre separated from the Helicteres isora plant by a retting process. The effect of alkali treatment on the thermal properties of the fibre was studied using TGA, DTA and DSC in oxygen and nitrogen atmosphere. Mechanical properties like tensile strength, Young's modulus, flexural strength, flexural modulus and impact strength of the composites containing untreated and alkali-treated fibres have been studied as a function of fibre loading. The optimum loading for tensile properties of the composite containing untreated fibre was found to be 45% by volume and on alkalization of the fibre, the optimum loading increased to 66%. For flexural properties the loading was optimized at about 56% and 66%, for the composites containing untreated and alkali treated fibres, respectively. From DMA studies it was observed that the alkali-treated fibre composites have higher E′ and E″ values compared to untreated fibre composites. From swelling studies in styrene it was observed that the mole percent uptake of the solvent by the treated fibre composites is less than by the untreated fibre composites. From these results it can be concluded that in composites containing alkalized fibres there is enhanced interfacial adhesion between the fibre and the matrix leading to better properties, compared to untreated fibre composites.  相似文献   

2.
《Composite Interfaces》2013,20(1-2):141-163
Sisal fibre reinforced composites, one class of a broad range of eco-composite materials, were studied in connection with the effects of fibre surface treatment on their fracture-mechanical properties. Previous investigations on sisal fibre and its composites have been fully reviewed [1], which provided an impetus for this research. Two fibre surface treatment methods, chemical coupling based on silane and oxidization based on permanganate and dicumyl peroxide, together with untreated sisal fiber composites were used to set up different levels of interface bonding strength. The interface effects on the mechanical properties and fracture toughness of sisal fibre reinforced vinyl-ester composites were completely assessed based on the test results obtained and theoretical analyses. Many aspects of studies reported in this paper are original, such as single fiber pull-out tests and toughness evaluation of sisal composites aided by scanning electron microscopy. The results showed that fibre surface treatment could improve interfacial bonding properties between sisal fibre and vinylester resin. These in turn influenced the fracture-mechanical characteristics of this class of ecocomposites.  相似文献   

3.
《Composite Interfaces》2013,20(7-9):763-786
The dielectric properties, such as dielectric constant, volume resistivity and dielectric loss factor, of sisal/coir hybrid fibre reinforced natural rubber composites have been studied as a function of fibre loading, fibre ratio, frequency, chemical modification of fibres and the presence of a bonding agent. The dielectric constant values have been found to be higher for fibre filled systems than pure natural rubber. This has been attributed to the polarization exerted by the incorporation of fibres into the matrix. Dielectric constant values were observed to be decreased with increase in frequency due to the decreased interfacial and orientation polarization at higher frequencies. Whereas dielectric constant increases with fibre loading because of the increment in number of polar groups after the addition of hydrophilic lignocellulosic fibres. The volume resistivity of the composites was found to be decreased with fibre loading and a percolation threshold has been obtained at 15.6% volume of fibres. Fibre treatment, such as alkali, acetylation, benzoylation, peroxide and permanganate, were carried out to improve the adhesion between fibres and matrix. The dielectric constant values were lower for systems consisting of fibres subjected to chemical treatments due to the increased hydrophobicity of fibres. The addition of a two-component dry bonding agent consisting of hexamethylene tetramine and resorcinol, used for the improvement of interfacial adhesion between the matrix and fibres, reduced the dielectric constant of the composites. When the weight percentage of sisal fibre was increased in the total fibre content of the hybrid composites, the dielectric constant was found to increase. The added fibres and different chemical treatments for them increased the dielectric dissipation factor. A dielectric relaxation has been observed at a frequency of 5 MHz.  相似文献   

4.
《Composite Interfaces》2013,20(7-9):753-762
One of the main problems in fabricating natural fibre reinforced polymers is the poor adhesion between intrinsically polar plant fibres and non-polar polymer matrices. We have developed a truly green technique of modifying natural fibre (hemp and sisal) surfaces to improve the interaction between the fibres and polymers by attaching nano-scale bacterial cellulose to the fibre surfaces. These modified natural fibres were then incorporated into the renewable polymers cellulose acetate butyrate (CAB) and poly-L-lactic acid (PLLA). Unidirectional natural fibre reinforced composites were manufactured to investigate the impact of the surface modification on the fibre and interface dominated composite properties. Both the tensile strength parallel as well as perpendicular to the fibres of the composites reinforced by bacterial cellulose modified natural fibres were found to increase significantly, especially in the case of a PLLA matrix. In case of modified sisal reinforced PLLA the parallel strength increases by 44% and the off-axis composite strength by 68%. Scanning electron microscopy observations of the composite fracture surfaces confirm the improved interaction between the fibre and the polymer matrix.  相似文献   

5.
There has been a growing interest in the utilization of sisal fibres as reinforcement in the production of polymeric composite materials. Natural fibres have gained recognition as reinforcements in fibre polymer–matrix composites because of their mechanical properties and environmental friendliness. The mechanical properties of sisal fibre-reinforced polymer composites have been studied by many researchers and a few of them are discussed in this article. Various fibre treatments, which are carried out in order to improve adhesion, leading to improved mechanical properties, are also discussed in this review paper. This review also focuses on the influence of fibre content and fabrication methods, which can significantly affect the mechanical properties of sisal fibre-reinforced polymer composites.  相似文献   

6.
Hot-stage microscopy was used to characterise crystal growth at the interface between sisal fibre bundles and a polylactic acid (PLA) matrix in order to better understand the mechanical properties of sisal fibre–PLA composites. Cooling rates and crystallisation temperatures and times were varied to influence crystalline morphology at the interface. Single sisal fibre bundles were evaluated in their as received state or treated with 6 wt.% caustic soda solution for 48?h at room temperature. A microbond shear test was used to characterise the shear strength of the interface as a function of fibre surface treatment. These tests were performed on sisal fibre bundles carefully embedded in flat films of PLA supported on card mounts. Fibre bundles in a PLA matrix were cooled from 180?°C at rates from 2 to 9?°C/min and then crystallised isothermally. For as received fibre bundles uneven growth of PLA spherulites occurred at all cooling rates and crystallisation temperatures. For caustic soda treated fibres, uneven spherulitic growth was observed at crystallisation temperatures at and above 125?°C. In contrast, transcrystalline growth was observed for samples cooled to 120?°C at cooling rates from 2 to 6?°C/min and then allowed to crystallise. The microbond shear strengths of untreated and caustic soda treated fibre bundles were evaluated using Weibull statistics and the caustic soda treated fibres exhibited higher interfacial shear strengths in comparison to untreated fibres, reflecting the development of a transcrystalline layer at the fibre to matrix interface.  相似文献   

7.
《Composite Interfaces》2013,20(6):629-650
Using thermogravimetric analysis (TGA), the thermal behavior of sisal fibers and sisal/polyester composites, fabricated by resin transfer molding (RTM), has been followed. Chemical treatments have been found to increase the thermal stability, which has been attributed to the resultant physical and chemical changes. Scanning electron microscopy (SEM) and infrared (FT-IR) studies were also performed to study the structural changes and morphology in the sisal fiber during the treatment. The kinetic studies of thermal degradation of untreated and treated sisal fibers have been performed using Broido method. In the composites, as the fiber content increases, the thermal stability of the matrix decreases. The treated fiber reinforced composites have been found to be thermally more stable than the untreated derivatives. The increased thermal stability and reduced moisture behavior of treated composites have been correlated with fiber/matrix adhesion.  相似文献   

8.
Novel ultrasound backing materials based on polymer composites with improved dimensional stability and low coefficient of thermal expansion are being developed and analyzed. For this purpose a filled epoxy resin (Stycast1265), a commonly used backing material, was considered reference material and polyurethane composites (PU2305, PU2350) were proposed as better alternatives. When compared to the reference, the PU2350 filled with a mixture of Al2O3 and tungsten exhibited an approximately 15 times lower glassy transition temperature and a 2.5 time lower longitudinal thermal expansion at 20 °C. This ensures that within the entire operational temperature range the backing material is flexible, minimizing the thermal stresses induced onto transducer elements soldered joints and piezoceramic core. For the same material, the attenuation at 5 MHz was similar to the reference material while at 7 and 8.5 MHz it was 33% and 54% higher respectively. From these analyses it is concluded that the newly developed polyurethane composites outperform the reference backing with respect to the thermal dimensional stability as well as to the damping properties. An integrated rigorous mechano-acoustical approach is being proposed as an appropriate passive material design path. It can be easily extended to any other passive materials used for ultrasound transducer conception.  相似文献   

9.
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927 × 105 g/mol and 4.852 × 104 g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50 × 104 g/mol to 7.34 × 104 g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988 × 104 g/mol when the ALG was treated by ultrasound at 40 kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50 kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135 kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135 kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135 kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.  相似文献   

10.
《Composite Interfaces》2013,20(1-2):77-93
An analysis has been made of the tensile strength of sisal fibres and the interfacial adhesion between fibres and polyester resin droplets. Density and microscopy methods were used to determine the cross-sectional area of the sisal fibres. The average tensile strength of treated sisal fibres decreased by a modest amount following treatment with 0.06 M NaOH. However, this treatment resulted in a substantial increase in the interfacial shear strength at the sisal fibre to polyester resin interface. Weibull analysis has been used successfully to analyse variability in tensile strengths and interfacial shear strength using probability of failure plots. Scanning electron microscopy has revealed the shape of resin droplets on the surface of treated and untreated sisal fibres and contact angles are much lower for droplets on treated fibres. Damage to the surface of fibres has been examined following shear testing. Weibull analysis is an effective tool for characterising highly variable fibre properties and evaluating the level of adhesion between polymer resin and the fibre surface.  相似文献   

11.
The aim of the study was to investigate the impact of sodium alginate (ALG) pretreated by ultrasound on the enzyme activity, structure, conformation and molecular weight and distribution of papain. ALG solutions were pretreated with ultrasound at varying power (0.05, 0.15, 0.25, 0.35, 0.45 W/cm2), 135 kHz, 50 °C for 20 min. The maximum relative activity of papain increased by 10.53% when mixed with ALG pretreated by ultrasound at 0.25 W/cm2, compared with the untreated ALG. The influence of ultrasound pretreated ALG on the conformation and secondary structure of papain were assessed by fluorescence spectroscopy and circular dichroism spectroscopy. The fluorescence spectra revealed that ultrasound pretreated ALG increased the number of tryptophan on papain surface, especially at 0.25 W/cm2. It indicated that ultrasound pretreatment induced molecular unfolding, causing the exposure of more hydrophobic groups and regions from inside to the outside of the papain molecules. Furthermore, ultrasound pretreated ALG resulted in minor changes in the secondary structure of the papain. The content of α-helix was slightly increased after ultrasound pretreatment and no significant change was observed at different ultrasound powers. ALG pretreated by ultrasound enhanced the stability of the secondary structure of papain, especially at 0.25 W/cm2. The free sulfhydryl (SH) content of papain was slightly increased and then decreased with the increase of ultrasonic power. The maximum content of free SH was observed at 0.25 W/cm2, under which the content of the free SH increased by 6.36% compared with the untreated ALG. Dynamic light scattering showed that the effect of ultrasound treatment was mainly the homogenization of the ALG particles in the mixed dispersion. The gel permeation chromatography coupled with the multi-angle laser light scattering photometer analysis showed that the molecular weight (Mw) of papain/ALG was decreased and then increased with the ultrasonic pretreatment. Results demonstrated that the activity of immobilized papain improved by ultrasonic pretreatment was mainly caused by the variation of the conformation of papain and the effect of interactions between papain and ALG. This study is important to explain the intermolecular interactions of biopolymers and the mechanism of enzyme immobilization treated by ultrasound in improving the enzymatic activity. As expected, ALG pretreated by appropriate ultrasound is promising as a bioactive compound carrier in the field of immobilized enzyme.  相似文献   

12.
The present work evaluates the performance of ultrasound based sterilization approaches for processing of different fruit and vegetable juices in terms of microbial growth and changes in the quality parameters during the storage. Comparison with the conventional thermal processing has also been presented. A novel approach based on combination of ultrasound with ultraviolet irradiation and crude extract of essential oil from orange peels has been used for the first time. Identification of the microbial growth (total bacteria and yeast content) in the juices during the subsequent storage and assessing the safety for human consumption along with the changes in the quality parameters (Brix, titratable acidity, pH, ORP, salt, conductivity, TSS and TDS) has been investigated in details. The optimized ultrasound parameters for juice sterilization were established as ultrasound power of 100 W and treatment time of 15 min for the constant frequency operation (20 kHz). It has been established that more than 5 log reduction was achieved using the novel combined approaches based on ultrasound. The treated juices using different approaches based on ultrasound also showed lower microbial growth and improved quality characteristics as compared to the thermally processed juice. Scale up studies were also performed using spinach juice as the test sample with processing at 5 L volume for the first time. The ultrasound treated juice satisfied the microbiological and physiochemical safety limits in refrigerated storage conditions for 20 days for the large scale processing. Overall the present work conclusively established the usefulness of combined treatment approaches based on ultrasound for maintaining the microbiological safety of beverages with enhanced shelf life and excellent quality parameters as compared to the untreated and thermally processed juices.  相似文献   

13.
In this paper, the effects of carbon nanotubes (CNT) implantation and sisal fibre size on the electrical properties of sisal fibre-reinforced epoxy composites are reported. For this purpose, the epoxy composites reinforced with CNT-implanted sisal fibre of 5 mm and 10 mm lengths were prepared by hand moulding and samples characterized for their electrical properties, such as dielectric constant (ε′), dielectric dissipation factor (tan δ) and AC conductivity (σac) at different temperatures and frequencies. It was observed that the dielectric constant increases with increase in temperature and decreases with increase in frequency from 500 Hz to 5 KHz. Interestingly, the sample having CNT-implanted sisal fibre of 5 mm length exhibited the highest value of dielectric constant than the one with length 10 mm. This is attributed to the increased surface area of sisal fibre and enhancement of the interfacial polarization. At a constant volume and a length of 5 mm of the fibres, the number of interfaces per unit volume element is high and results in a higher interfacial polarization. The interfaces decrease as the fibre length increases, and therefore, the value of ε′ decreases at 10 mm fibre length. The peak value of the dielectric constant decreases with increasing frequency. A continuous decrease in dissipation factor (tan δ) with increasing frequency for all samples was observed, while at lower temperatures, the values of tan δ remains approximately same. The AC conductivity for 5 mm length sisal epoxy composite and 10 mm length sisal fibre–epoxy composites is higher than that of pure epoxy at all the frequencies.  相似文献   

14.
Treatment and management of food processing waste is a major challenge for food industry. Potato processing industry generates tremendous amount of peel and consider it as zero valued waste. Again, pomace generated after juice extraction from sweet lime pulp is considered as waste and not properly utilized. Whereas these waste could be utilized for the development of biodegradable packaging film to overcome environmental issues. Composite films were prepared with varying proportion of potato peel powder (PP) and sweet lime pomace (SLP) in the ratio of 0:1(A), 0.5:1(B), 1:1(C), 1:0.5(D), 1:0(E) with an ultrasound treatment of 45 min, and 0:1(F), 0.5:1(G), 1:1(H), 1:0.5(I), 1:0(J) with an ultrasound treatment of 60 min. Ultrasound was applied for 45 and 60 min to film forming solutions to break down biopolymer particles small enough to form a film. All the films were analyzed for their barrier and mechanical properties. It was observed that increasing ultrasound treatment times gives better result in film properties and less PP content also gives better film properties, from these observations film G prepared with 0.5:1 (PP:SLP) showed better characteristics among all other films. Water vapor permeability, moisture absorption, water solubility, breakage strength and elongation capacity of G film were reported as 7.25 × 10−9 g/Pa h m, 12.88 ± 0.348%, 38.92 ± 0.702%, 242.01 ± 3.074 g and 7.61 ± 0.824 mm respectively. However, thermal decomposition for film G took place above 200 °C. The film forming solution of selected G film, added with clove essential oil (1.5%) as an antimicrobial agent was wrapped on bread and stored it for 5 days. The film was successful in lowering the weight loss, reducing the hardness and inhibition of surface microbial load from bread sample.  相似文献   

15.
The influence of high intensity ultrasound (HIUS) on physicochemical and functional properties of sunflower protein isolates was investigated. Protein solutions (10% w/v) were treated with ultrasound probe (20 kHz) and ultrasound bath (40 kHz) for 5, 10, 20 and 30 min. Thermal stability of protein isolates was reduced as indicated by differential scanning calorimetry. Minimum thermal stability was observed at 20 min of sonication and increased further with increase in treatment time indicating aggregation at prolonged sonication. SDS-PAGE profile of proteins showed a significant reduction in molecular weight. Further, surface hydrophobicity and sulfhydryl content increased after HIUS treatment indicating partial unfolding of proteins and reduction in the intermolecular interactions. The particle size analysis showed that HIUS treatment reduced the particle size. Less turbid solution were observed largely due to reduction in particle size. HIUS decreased the available lysine content in protein isolates. Solubility, emulsifying capacity, emulsion stability, foaming capacity, foam stability and oil binding capacity were improved significantly, while as, water binding capacity was decreased. The effect of HIUS on physicochemical and functional properties of sunflower protein isolates was more pronounced in probe sonication rather than bath sonication. Protein isolates with improved functional properties can be obtained using high intensity ultrasound technology.  相似文献   

16.
Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. The aim of this study was to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound combined with levofloxacin treatment against M. smegmatis (a surrogate of M. tuberculosis). As part of this study, M. smegmatis was continuously irradiated with low frequency ultrasound (42 kHz) using several different doses whereby both intensity (0.138, 0.190 and 0.329 W/cm2) and exposure time (5, 15 and 20 min) were varied. Flow cytometric analyses revealed that the permeability of M. smegmatis increased following ultrasound exposure. The survival rate, structure and morphology of bacteria in the lower-dose (ISATA = 0.138 W/cm2 for 5 min) ultrasound group displayed no significant differences upon comparison with the untreated group. However, the survival rate of bacteria was significantly reduced and the bacterial structure was damaged in the higher-dose (ISATA = 0.329 W/cm2 for 20 min) ultrasound group. Ultrasound irradiation (0.138 W/cm2) was subsequently applied to M. smegmatis in combination with levofloxacin treatment for 5 min. The results demonstrated that the bactericidal effect of ultrasonic irradiation combined with levofloxacin is higher compared to ultrasound alone or levofloxacin alone.  相似文献   

17.
Cationization of cotton fabric was conferred by the sonicator reaction of cellulose with bromoacetyl bromide, followed by substitution of the terminal bromo groups by triethylamine. Experiments showed that the optimal volume of bromoacetyl bromide necessary to succeed the first stage was 0.4 mL. The order of weight gain for various processes indicates, ultrasound, 25 kHz > ultrasound, 40 kHz > mechanical stirring. Also, for the second stage the order of nitrogen contents indicates ultrasound, 25 kHz > ultrasound, 40 kHz > mechanical stirring. The structures of both untreated and cationic fibres were investigated by FTIR spectroscopy. Modified cotton fabric was subsequently dyed in both conventional and ultrasonic techniques with isosalipurposide dye isolated from Acacia cyanophylla yellow flowers. The effect of dye bath pH, ultrasonic power and frequency, dyeing time and temperature were studied and the order of K/S values indicates ultrasound, 25 kHz > ultrasound, 40 kHz > CH. ultrasound was also found to enhance the dye uptake and the overall fastness properties. Analysis of the sorption isotherms of isosalipurposide dye on cationic cotton fabric shows that the Languimir isotherm equation is best able to correlate the data.  相似文献   

18.
《Composite Interfaces》2013,20(6):527-541
The availability of natural fibers with their high performance and low cost contributes to a healthy ecosystem and fulfills the economic interests of the society. Sisal fiber, which is easily cultivated, is one of the most widely used natural fibers. For the present studies, characterisation of locally available sisal fiber of M.P. state in India was carried out with the investigation on the effect of alkali treatment with a wide range of different concentrations on the mechanical properties of sisal fiber. The physical and chemical properties of sisal fiber were analyzed with known methods and results were found to be similar to earlier reported values. Alkali treatment was carried out with different concentrations and mechanical properties were evaluated with Lloyd Fiber Testing Instrument. The results show that the chemical treatment enhances the mechanical properties of fiber up to a limit and is found to decrease with further increase in concentration. Scanning Electron Microscopy was used to investigate the morphology of untreated and alkali treated sisal fibers which indicated that the different concentrations of alkali alter the fiber surfaces with variations. Sisal fibers before and after alkali treatment were characterised further by thermogravimetry to establish their thermal stability, and measurements showed that alkali treated fiber became more thermal resistant than the untreated fiber and it was also noticed that thermal resistance decreases at higher concentration.  相似文献   

19.
Increasing consumer awareness regarding the health benefits of different nutrients in food have led to the requirement of assessing the effect of food processing approaches on the quality attributes. The present work focuses on understanding the effects of novel approaches based on the use of ultrasound and ultraviolet irradiations on the nutritional quality of different fruit and vegetable juices (orange, sweet lime, carrot and spinach juices) and its comparison with the conventional thermal pasteurization operated at 80 °C for 10 min. The ultrasound sterilization parameters were maintained at ultrasound frequency of 20 kHz and power of 100 W with treatment time as 15 min. For the case of ultraviolet irradiations, 2 UVC lamps (254 nm) of 8 W were placed in parallel on either sides of the reactor. The treated juices were analyzed for total phenol content, antioxidant activity, vitamin C, carbohydrates etc. It has been established that ultrasound processed juice retained most of the nutrient components to higher extent in comparison to all the other techniques used in the work. Combination of ultrasound and ultraviolet irradiations used to achieve an effective decontamination of juices (recommended 5 log reduction of microorganisms) also retained nutrients to a higher level in comparison to the thermal method; however some losses were observed as compared to the use of only ultrasound which could be attributed to inefficient heat exchange in the combined approach. A scale up attempt was also made for treatment of spinach juice using ultrasonic reactors and analysis for quality attributes confirmed that the juice satisfied the criteria of required nutrient contents for 18 days shelf life trial in refrigerated storage conditions. The present work has clearly established the usefulness of ultrasound based treatment in maintaining the nutritional quality of beverages while giving enhanced shelf life as compared to the conventional approaches.  相似文献   

20.
NiO–yttria stabilised zirconia (YSZ) hollow fibres with varying NiO content and a desired microstructure were prepared using a phase inversion technique and sintering. By controlling the fabrication parameters, microstructures with predominately finger-like pores near the inner and outer surfaces and a denser central layer with sponge-like pores were produced, for use as substrates for anode-supported hollow fibre solid oxide fuel cells (HF-SOFC). The NiO–YSZ fibres were reduced to Ni–YSZ at 250–700 °C in hydrogen flowing at 20 cm3 min? 1 to produce Ni–YSZ hollow fibres, the mechanical and electrical properties of which were determined subsequently, reduction to Ni being verified by X-ray diffraction. The effects of NiO concentration and sintering temperature of the fibre precursors on the conductivity, strength and porosity of the reduced hollow fibres were investigated to assess their suitability for use as anode substrates. As expected, increasing Ni concentration increased electrical conductivities and decreased mechanical strength. Sintering temperature had a critical effect in producing axially conductive hollow fibres of sufficient mechanical strength for use as SOFC anodes. The hollow fibres retained their initial microstructure through the reduction process, though ca. 41% volume contraction is predicted on reduction of NiO to Ni, producing increased porosity in the reduced fibres. The mean porosity of the Ni–YSZ hollow fibres was ca. 60% and ca. 40% after sintered at 1250 °C and 1400 °C, respectively. The mean pore sizes for all the fibres after reduction varied between ca. 0.3 and 1 µm. The hollow fibres produced with 60% NiO, of length ca. 300 mm, electrical conductivities of ca. (1–2.25) × 105 S m? 1 and a porosity of ca. 43% are being used currently to construct and test the electrical behaviour of an anode-supported HF-SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号