首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
空化泡的运动特性是声场作用下的动力学行为,受空化泡初始半径,声压幅值,驱动声压频率,液体特性等众多因素的影响,是个复杂工程。本文从双空化泡运动方程出发,考虑到液体粘滞系数、空化泡辐射阻尼项的影响,研究了不同初始半径、驱动声压频率、驱动声压幅值、液体粘滞系数下空化泡泡壁的运动情况,研究结果表明不同初始半径、外界驱动声压频率、驱动声压幅值、液体粘滞系数均会对空化泡的膨胀比和空化泡的溃灭时间有一定影响。  相似文献   

2.
The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng–Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.  相似文献   

3.
含气泡液体中气泡振动的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王勇  林书玉  莫润阳  张小丽 《物理学报》2013,62(13):134304-134304
研究了含气泡液体中单个气泡在驱动声场一定情况下的振动过程. 让每次驱动声场作用的时间特别短, 使气泡半径发生微小变化后再将其变化反馈到气泡群对驱动声场的散射作用中去, 从而可以得到某单个气泡周围受气泡散射影响后的声场, 接着再让气泡在该声场作用下做短时振动, 如此反复. 通过这样的方法, 研究了液体中单个气泡的振动情况并对其半径变化进行了数值模拟, 结果发现, 在液体中含有大量气泡的情况下, 某单个气泡的振动过程明显区别于液体中只有一个气泡的情况. 由于大量气泡和驱动声场的相互作用, 使气泡半径的变化存在多种不同的振动情况, 在不同的气泡大小和含量的情况下, 半径变化过程分别表现为: 在平衡位置附近振荡的过程; 周期性的空化过程; 一次空化过程后保持某一大小振荡的过程; 增长后维持某一大小振荡的过程等. 所以, 对于含气泡液体中气泡振动的研究, 在驱动声场一定的情况下, 必须考虑气泡含量的因素. 关键词: 含气泡液体 超声空化 散射 数值模拟  相似文献   

4.
The interaction between spherical cavitation bubble and flat wall is transformed into that between the real bubble and imaging bubble by the method of images. Firstly, we investigate the dynamics of real bubble and matched, inversed or mis-matched imaging bubble driven by a small amplitude ultrasound, revealing the characteristics of the interaction between cavitation bubble and rigid, soft and impedance walls. Then, we emphatically study the dynamics of real bubble and mis-matched imaging bubble driven by a finite amplitude ultrasound, and the interaction characteristics between cavitation bubble and real impedance wall are revealed. The results show that the cavitation bubble is always close to the rigid wall and far away from the soft wall; For the impedance wall, whether the cavitation bubble is far away or close depends on the specific wall parameters. Moreover, the direction and magnitude of bubble's translation velocity can be changed by adjusting the driving parameters. Understanding the interaction between cavitation bubble and impedance wall is of great significance for efficient application of ultrasonic cavitation.  相似文献   

5.
超声场下刚性界面附近溃灭空化气泡的速度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
郭策  祝锡晶  王建青  叶林征 《物理学报》2016,65(4):44304-044304
为了揭示刚性界面附近气泡空化参数与微射流的相互关系, 从两气泡控制方程出发, 利用镜像原理, 建立了考虑刚性壁面作用的空化泡动力学模型. 数值对比了刚性界面与自由界面下气泡的运动特性, 并分析了气泡初始半径、气泡到固壁面的距离、声压幅值和超声频率对气泡溃灭的影响. 在此基础上, 建立了气泡溃灭速度和微射流的相互关系. 结果表明: 刚性界面对气泡振动主要起到抑制作用; 气泡溃灭的剧烈程度随气泡初始半径和超声频率的增加而降低, 随着气泡到固壁面距离的增加而增加; 声压幅值存在最优值, 固壁面附近的气泡在该最优值下气泡溃灭最为剧烈; 通过研究气泡溃灭速度和微射流的关系发现, 调节气泡溃灭速度可以达到间接控制微射流的目的.  相似文献   

6.
7.
Sonoluminescence     
Sonoluminescence (SL) is the name given to the light emitted when a liquid is cavitated in a particular (rather violent) manner. The appropriate cavitation conditions can be realized by using high intensity ultrasound, a spark discharge, a laser pulse, or by flowing the liquid through a Venturi tube. SL occurs in a wide variety of liquids, its intensity and spectrum depending on the nature of the solvent and the solute (including dissolved gas). The intensity, but apparently not the spectrum, also depends on the frequency of the sound and on the temperature and hydrostatic pressure of the liquid. In a standing wave sound field the SL originates from bubbles attracted to the pressure antinodes and has its maximum intensity when the bubble volume is a minimum. The phase of the sound cycle at which this occurs depends on the amplitude and frequency of the sound field. Spectral measurements show that SL originates mainly from the recombination of free radicals created within the high temperature and high pressure environment of a bubble undergoing an adiabatic compression, as may happen either during transient cavitation or during highly non-linear, but stable, cavitation. In discussing these, and other, attributes of SL this review emphasizes developments over the past 20 years. Because of the importance of the dynamical theory of bubbles to a full understanding of SL, it includes an account of bubble dynamics. In addition, it describes the various experimental techniques employed in the creation and analysis of SL. Although the review lays particular stress on the SL produced via acoustic cavitation, it also examines the characteristics of the SL produced using other methods of cavitation.  相似文献   

8.
In the preceding paper (part 1), the pressure and temperature fields close to a bubble undergoing inertial acoustic cavitation were presented. It was shown that extremely high liquid water pressures but quite moderate temperatures were attained near the bubble wall just after the collapse providing the necessary conditions for ice nucleation. In this paper (part 2), the nucleation rate and the nuclei number generated by a single collapsing bubble were determined. The calculations were performed for different driving acoustic pressures, liquid ambient temperatures and bubble initial radius. An optimal acoustic pressure range and a nucleation temperature threshold as function of bubble radius were determined. The capability of moderate power ultrasound to trigger ice nucleation at low undercooling level and for a wide distribution of bubble sizes has thus been assessed on the theoretical ground.  相似文献   

9.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

10.
王寻  黎奥  周敏  梁金福  张泽坤  吴伟 《应用声学》2022,41(5):735-742
探索方波驱动下双气泡的脉动规律,能够促进方波在声空化工程中的实际应用。本文通过数值求解双气泡耦合方程组,研究了方波驱动下双气泡的动力学行为,得到了多种条件下不同时刻两个气泡半径的数值,并以此计算出气泡间的次Bjerknes力。研究表明,增大驱动频率会使得两个气泡膨胀时能达到的最大半径和次Bjerknes力减小。当两个气泡的平衡半径不同时,其中一个气泡的剧烈收缩会使得另一个气泡产生一个振动方向相反的声脉冲。随着两个气泡平衡半径差距的增加,气泡收缩的时间间隔增大。此外,当驱动声压幅值逐渐增大时,气泡脉动规律也会发生很大的变化。  相似文献   

11.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

12.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

13.
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.  相似文献   

14.
The radial and translational oscillations of a single cavitation bubble in a standing ultrasound wave were investigated experimentally at various driving acoustic pressures for aqueous ethanol solutions with different bulk molar fractions of ethanol range of 0-1.3 × 10(-3). The results show that both the lower and upper stability thresholds of the acoustic driving pressure decreased as the concentration of ethanol was increased. At a given driving pressure the ambient and maximum bubble sizes increased with increasing ethanol concentration. In addition, as the ethanol was increased, the sonoluminescence intensity decreased while the bubble dynamics remained largely unchanged. The translational oscillation of the levitated bubble, however, became increasingly violent with increasing ethanol concentration. The displacement of the bubble reached 0.7 mm at the highest concentration studied (1.3 × 10(-3)) and the maximum bubble size was found to change as the bubble jumped up and down. This bubble translation may be responsible for the decrease of the acoustic driving pressure threshold and suggests that repetitive injection of ethanol molecules into the bubble takes place. These results may account for the different sensitivities of single bubble and multi-bubble sonoluminescence to the presence of volatile additives.  相似文献   

15.
Qing-Qin Zou 《中国物理 B》2023,32(1):14302-014302
The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues. Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.  相似文献   

16.
Xiumei Liu  Xinhua Liu  Jian Lu 《Optik》2011,122(14):1254-1257
Comprehensive numerical and experimental analyses of the effect of temperature on cavitation oscillations are performed. In the experimental study, the oscillation of a laser-generated single cavitation bubble near a rigid boundary is obtained using a fiber-optic diagnostic technique based on optical beam detection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. And cavitation bubble tests are performed using water at different temperatures, and its temperature ranges from freezing point (0 °C) to near boiling. Furthermore, a modified Rayleigh-Plesset equation is derived for calculating the temporal development of the bubble radius at different temperatures. Both the experimental and the numerical results show that the maximum bubble radius and bubble lifetime both increase as temperature increases. The mechanism behind it has also been discussed.  相似文献   

17.
This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization.  相似文献   

18.
亚临界水中超声激励空化泡动力学分析   总被引:2,自引:2,他引:0       下载免费PDF全文
杨日福  赵超  丘泰球 《应用声学》2012,31(3):184-189
考察亚临界水中压力和温度对超声空化泡动力学的影响。应用非线性Rayleigh-Plesset方程模拟空化泡运动过程,并利用Matlab软件编程求数值解,用碘量法测定超声在亚临界水中的声空化产额。结果表明:当亚临界水的压力相似文献   

19.
采用自行研制的光纤传感器研究了激光等离子体空泡在固壁面附近的脉动特性。实验获得了激光空泡三次膨胀到最大位置对应的波形图;并据此判定了激光空泡在脉动过程中对应的最大泡半径和溃灭周期;在此基础上结合空泡溃灭理论,计算了激光泡溃灭周期的延长因子κ。结果表明:随着脉动次数的增加,最大泡半径依次减小;随着作用激光能量的增大,最大泡半径,空泡溃灭周期的延长因子κ均增大;而无量纲参量的增大将导致延长因子的减小。所得到的延长因子同样可用于无限域流场。  相似文献   

20.
超声波声孔效应中气泡动力学的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
陈谦  邹欣晔  程建春 《物理学报》2006,55(12):6476-6481
在超声快速制取组织细胞病理切片的过程中,发现激励信号对切片制取效果有明显的影响.为了掌握超声激励信号对组织细胞的影响规律,达到快速制取病理切片的最佳状态,从气泡空化模型入手,通过改变激励信号频率、声压、气泡初始半径和液体黏滞系数等参量,研究了声孔效应中气泡动力学激励机制.数值计算表明:空化泡振动随激励声压增强而升高,随液体黏滞系数增强而减弱;一定频率范围内空化泡振动能保持在膨胀、收缩和振荡的稳定空化状态,存在空化泡稳态振动的最佳激励频率;一定初始半径能保证空化泡产生稳定的振动,存在空化泡稳态振动幅度最大的初始半径.实际操作中,在频率、声压、初始半径和黏滞系数综合作用的若干空化阈内,声孔效应使超声快速法制取细胞组织切片获得最佳效果. 关键词: 声孔效应 超声空化 气泡振动 稳态空化域  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号