首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Single crystals of the violet-red Li0.9Mo6O17, violet-blue Li0.32MoO3, and the new blue Li0.04MoO3 bronzes have been grown by a temperature gradient flux growth method in evacuated quartz ampoules. Optimal growth conditions determined for each of the phases are reported. Li0.9Mo6O17 is monoclinic, and a quasi-two-dimensional metallic conductor at room temperature, similar to K0.9Mo6O17 · Li0.04MoO3 appears to be a new intercalation compound of MoO3.  相似文献   

2.
New pH- and sodium ion-sensitive metal-oxide-type sensors have been developed and tested with a direct solid state contact method. Performance was demonstrated at ambient temperature with single crystals of several molybdenum bronzes (i.e. Na0.9Mo6O17, Li0.9Mo6O17, Li0.33MoO3 and K0.3MoO3). The pH sensors with Na-molybdenum-oxide bronzes show near ideal Nernstian behavior in the pH range 3–9. The response is not affected by the direction of the pH change. The response time of most molybdenum bronze pH sensors is less than 5 s for 90% response. The sodium molybdenum bronze sensor responded reproducibly and fast to changes of Na+ concentration in the range 1–10–4 mol dm–3. Cross sensitivity tests to other ions such as H+ or K+ have shown that the new sodium ion sensor may be used when the concentration of other ions is an order of magnitude smaller than the Na+ concentration. pH sensors with single crystals of molybdenum oxide bronzes can be used to follow pH titrations. Electronic Publication  相似文献   

3.
About a New Copper Molybdate: Cu4Mo5O17 Single crystals of Cu4Mo5O17 were prepared by solid state reaction of Cu2O and MoO3 in the absence of oxygen. Single crystal X-ray investigations lead to triclinic symmetry (space group P1, a = 6.782, b = 9.573, c = 10.948 Å; α = 107.03, β = 88.40, γ = 111.02°, Z = 2). Cu4Mo5O17 shows crystal chemical differences in respect to the CuII-oxomolybdates. The differences concern the coordination of Mo6+. Cu+ formes not a linear O? Cu? O group but is surrounded by oxygen tetrahedrally and octahedrally. The crystal structure is described and discussed.  相似文献   

4.
Structure determination of the fully intercalated phase Li12Mo5O17 and of the deintercalated oxide Li5Mo5O17 has been carried out by electron microscopy and neutron powder diffraction. The reversible topotactic transformation between the ordered rock salt structure of the former and the ribbon structure of the latter (closely related to that of Li4Mo5O17) is explained on the following basis: both structures can be described as strips built up as an assembly of infinite ribbons of MoO6 octahedra that are five octahedra thick, and that differ by slight displacements of the octahedral ribbons. We show that the electrochemical behavior of the LixMo5O17 system is based on two sorts of Li+ sites; those that are located within the strips between the ribbons, and those that are located at the border of the strips. The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure.  相似文献   

5.
Crystals of Li0.33 MoO3 (blue), Rb0.23MoO3 (blue) and Cs0.31MoO3 (red) were grown by electrolysis from MoO3M2MoO4 melts (M =alkali metal) with composition 70–77 mole% MoO3. Melts richer in M2MoO4 produced MoO2 only. Correlation is made between bronze formation and the coordination of Mo in the melt and in the equilibrium solid phase M2Mo4O13. Li0.33MoO3 and Cs0.31MoO3 are semiconductors with high-temperature-range activation energies 0.16 and 0.12 eV. Rb0.23MoO3 has an electrical behavior similar to that of blue KxMoO3 with a semiconductor-metal transition at (170 ± 5) K. ESR spectra observed in Li0.33MoO3 and Rb0.23MoO3 single crystals at 4.2 K show extensive delocalization of the 4d1 electron associated with Mo(V) centers. Attempts to grow molybdenum bronzes containing Ca or Y were unsuccessful.  相似文献   

6.
《Mendeleev Communications》2022,32(6):834-836
For the first time, single crystal of Li2W0.96Mo0.04O4 has been grown by low-temperature-gradient Czochralski technique. The thermodynamic characteristics (standard formation enthalpy and lattice enthalpy) that are necessary to improve the growth technology have been studied by solution calorimetry. For Li2W1–xMoxO4 single crystals, correlations of lattice enthalpies and standard formation enthalpies with tolerance factor were found.  相似文献   

7.
Structure determination of the molybdenum purple bronze Na0.9Mo6O17 is carried out by single-crystal X-ray diffraction. The crystal is monoclinic with space group A2 and the lattice constants are a = 12.983(2), b = 5.518(1), c = 9.591(2) Å, β = 89.94(1)°, Z = 2. Full-matrix least-squares refinement gives the final values of R(F) = 0.028 and Rw(F) = 0.040 for 1484 independent reflections, in which the occupancy factor of the sodium atom becomes 0.899(12). The present structure is built up of the linkage of the MoO4 and MoO6 polyhedra. There are slabs which consist of four layers of distorted MoO6 octahedra sharing corners. Both the structure and the molybdenum valence distribution estimated from the MoO bond lengths are considered to lead to the two-dimensional electronic transport. This structure is compared with those of other members of molybdenum purple bronzes, K0.9Mo6O17 and Li0.9Mo6O17. The difference of the electronic properties among these compounds can be well understood on the basis of their structural characteristics.  相似文献   

8.
Single crystals of Li8Bi2(MoO4)7 were synthesized; the composition and crystal structure of this compound were determined from X-ray diffraction data (CAD-4 automatic diffractometer, MoKa radiation, 1767 reflections, R = 0.031). The parameters of the tetragonal unit cell are as follows: a = 21.130, c = 5.287 Å, Z = 4, space group -14. The structure of the binary molybdate is a three-dimensional mixed framework of MoO4 tetrahedra of four varieties, Bi eight-vertex potyhedra, and Li(l)O6 and Li(2)O6 octahedra. The large channels of the framework along the c axis contain MoO4 tetrahedra of the fifth variety with Li(3)O4 and Li(4)O4 tetrahedra attached to them via common vertices and forming four symmetrically related chains of pyroxene type. The structure of Li8Bi2(MoO4)7 involves structural fragments of Li3Fe(MoO4)3 and a-RbPr(MoO4)2 and is a new structural type in the class of binary molybdates and tungstates of uniand trivalent metals.  相似文献   

9.
The depression of freezing point of molten K2Cr2O7 and KNO3 as solvents was measured after addition of small concentrations of the following compounds: to K2Cr2O7: MoO3, CrO3, (NH4)2CrO4, K2MoO4, Na2MoO4, Li2MoO4, and Na2Mo2O7, respectively; to KNO3: CrO3, (NH4)2Cr2O7 K2Cr2O7, K2CrO4 and MoO3, (NH4)6(Mo7O24) · 4 H2O, K2Mo2O7, K2MoO4, Na2MoO4 and Li2MoO4, respectively. It could be concluded from the measured values of the freezing point depression if a reaction between solvent and solute took place.  相似文献   

10.
The binary molybdate of variable composition Li2?2nMn2+x(MoO4)3 (O2Fe2(MoO4)3, was discovered in the Li2MoO4-MnMoO4 system. We have grown single crystals of Li1.60Mn2.20(MoO4)3) and determined its crystal structure (space group Pnma, a=5.145, b=10.681, c=17.985 Å, Z=4). Along with statistical arrangement of Li and Mn in three different atomic positions, cation vacancies in one of these were found. Based on the data obtained, we propose to revise the compositions of some lithium-containing phases with the Li2Fe2(MoO4)3-type structure.  相似文献   

11.
Electronic structures of MoO2 (4d2) and molybdatc (4do) are calculated by the discrete-variational Xα method employing [Mo2O1012? and [MoO4]2? clusters. The calculations indicate that the Mo—O bond is more covalent in the molybdatc than in MoO2. Level structures for the valence band region arc in agreement with XPS spectra of MoO2 and Li2MoO4.  相似文献   

12.
We examined low-temperature synthetic route based on the amorphous nature of giant species to succeed to prepare Cs blue bronze (Cs0.3MoO3), which has never obtained by usual high-temperature methods, at ca. 680 K. Solid solutions (K1−xRbx)0.28MoO3 and (Li1−xNax)0.9Mo6O17 were also obtained at lower temperatures (ca. 670 K). For the latter system consisting of non-isostructural end members, Li0.9Mo6O17-structure type solid solution was formed even when 0.25<x<0.70, unlike the case by the usual high-temperature methods. Metastable mixed oxides Ln2Mo3O9 (Ln=La, Gd) were obtained, but not as single phases.  相似文献   

13.
The Li2ZnTi3-xMoxO8 (x = 0, 0.05, 0.1 and 0.15) anode materials are successfully synthesized through a simple solid-state method, and few Li2MoO4 phase can be found in Li2ZnTi3-xMoxO8 (x = 0.1 and 0.15). All samples are composed of nanocrystalline particles and irregular micron-sized particles with a relatively uniform particle size of 100–200 nm Li2ZnTi2.9Mo0.1O8 shows the best electrochemical properties among all samples. The Li2ZnTi2.9Mo0.1O8 delivers a charge/discharge capacity of 188.1/188.2 mA h/g at 1 A/g after 400 cycles, but the corresponding capacity of pristine Li2ZnTi3O8 is only 104.5 (102.2) mA h/g. The Mo6+ doping enhances the reversible capacity, rate performance, and cycling stability of Li2ZnTi3O8, especially at large current densities. The improved electrochemical performance of Li2ZnTi3-xMoxO8 can be ascribed to the enhanced electrical conductivity, improved intercalation/de-intercalation reversibility of Li ions, increased lithium-ion diffusion coefficients, and reduced charge-transfer resistance. This work provides an effective strategy to construct high-performance anode materials for advanced lithium-ion battery; this effective design strategy may be used to enhance the reversible specific capacity, and rate the performance and cycle stability of other insertion-host anode materials.  相似文献   

14.
Coexistence Relations, Preparation and Properties of Ternary Compounds in the System Cu/Mo/O The phase diagram of the ternary system Cu/Mo/O is presented at 773 K. The compounds CuMoO4, Cu3Mo2O9, Cu4Mo5O17, Cu6Mo5O18, Cu4–xMo3O12, and CuxMoO3 are found to be thermodynamical stable. The homogeneity range of Cu4–xMo3O12 runs to x = 0.1–0.2. Single crystals of CuMoO4 and Cu3Mo2O9 were grown by chemical transport reactions with TeCl4, Cl2, HCl, and Br2 as transport agent. The results were compared with thermochemical calculations. The decomposition of CuMoO4 and Cu3Mo2O9 was investigated with thermal analysis and decompositon pressure measurements.  相似文献   

15.
The catalytic combustion of carbon black at 350–420°C in the presence of CuMoO4 has been investigated. The separate catalyst reduction and reoxidation stages make nonadditive contributions to the overall heat of the process. This indicates the formation of catalytically intermediate compounds during the redox reactions. The reduction of the catalyst with carbon yields the copper(I) molybdates Cu6Mo5O18 and Cu4Mo5O17 on its surface. The reoxidation of the reduced phases is accompanied by the release of Cu2O and MoO3 followed by the formation of the active phase Cu4 ? x Mo3O12, which is capable of activating carbon black combustion.  相似文献   

16.
Effect of the electrolyte composition and of the solvent-salt cation on the oxygen coefficient of the cathodic product (O/U atomic ratio) and basic characteristics of the potentiostatic electrodeposition of uranium dioxide in prolonged recovery of uranium oxides from electrolytes of the system M2MoO4-M2Mo2O7-UO2MoO4 Melts (M = Li, Na, K, Cs) in air was analyzed. A decrease in the UO2MoO4 concentration and accumulation of M2Mo2O7 in the electrolyte in the course of a prolonged electrolysis suppress the solvolysis of uranyl ions and make lower the oxygen coefficient of the cathodic product. Li2MoO4-based melts possessing pronounced oxygenacceptor properties exhibit an anomalous behavior in these experiments. The current efficiency, initial current density, and deposition rate of the product decrease as electrolytes are depleted of uranium. In discussions of numerical data, it is necessary to take into account the formation of lower valence forms of uranium due to the chemical corrosion of the cathodic product, and in the case of melts of the lithium system, the additional cathodic process in which the solvent is reduced.  相似文献   

17.
Four probe electrical resistivity measurements between 1.5 and 300 K were made on single crystals of the violet-red bronze Na0.9Mo6O17 grown by a temperature gradient flux technique. The temperature variation of the resistivity shows metallic conductivity and highly anisotropic behavior similar to K0.9Mo6O17 and Li0.9Mo6O17. The room-temperature resistivity, measured in the direction parallel to the plate axis, is 3.0 × 10?3 Ω cm and perpendicular to that axis it is 0.21 Ω cm. A transition observed at ~88 K is possibly related to the onset of a charge density wave. The temperature variation of the susceptibility show Pauli paramagnetic behavior at high temperature, and highly anomalous behavior in the vicinity of the transition at low temperatures.  相似文献   

18.
The temperature dependence of the magnetic susceptibility for the microcrystalline compounds MoO2, η-Mo4O11, γ-Mo4O11, Mo17O47, Mo8O23, Mo9O26, and Mo18O26, respectively, has been investigated between 77 and 550 K at various external fields. The susceptibility increases slightly with temperature for all solids. At low temperatures the changes are more pronounced for η-Mo4O11, γ-Mo4O11, Mo17O47, and Mo18O52. The deviations from stoichiometry and the related changes in the concentration of charge carrier have a large influence on the values of the susceptibility. Furthermore, some indications of anistotropy were found.  相似文献   

19.
η-Mo4O11 and Mg2Mo3O8: a New Way of Synthesis and Refinement of their Crystal Structures Mg2Mo3O8 was obtained by solid state reaction of MgI2 and MoO3 (1:1) at 200°C and subsequent crystallization at 800°C. Under the same conditions, ZnI2 and MoO3 only yielded rather impure Zn2Mo3O8; however, when ZnI2 or CdI2 and MoO3 were taken in a molar ratio of 1:2, well crystallized η-Mo4O11 was obtained. The known crystal structures of Mg2Mo3O8 and η-Mo4O11 were refined with new X-ray diffraction data (R = 0.030 and 0.059, respectively). The kind of twinning of monoclinic η-Mo4O11 is discussed.  相似文献   

20.
The quinary reciprocal system Li, K || F, Br, MoO4, WO4 was partitioned into simplexes using graph theory by writing an adjacency matrix and solving a logical expression. A tree of phases of the system was constructed. The tree of phases has a linear structure and consists of four stable partitioning tetrahedra, two stable pentatopes, and three stable hexatopes. In the quinary reciprocal system Li, K || F, Br, MoO4, WO4, crystallizing phases were predicted. The stable tetrahedron LiF–KBr–Li2MoO4–Li2WO4 of the quinary reciprocal system Li, K || F, Br, MoO4, WO4 was studied by differential thermal analysis and X-ray powder diffraction. There are no invariant equilibrium points in the tetrahedron. Continuous series of solid solutions Li2MoxW1–xO4 do not decompose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号