首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of the cycloaurated gold(III) dichloride complexes [AuCl2(anp)] (anp = 2-anilinopyridyl), [AuCl2(bp)] (bp = 2-benzylpyridyl) and [AuCl2(tolpy)] (tolpy = 2-(p-tolyl)pyridyl) with alizarin (H2az) and Me3N base in refluxing methanol gave the complexes [Au(az)L] (L = anp, bp or tolpy). Additionally, the reaction of [AuCl2(tolpy)] with 3,4-dihydroxybenzaldehyde (H2dhb) and Me3N gave the complex [Au(dhb)(tolpy)]. These complexes contain the ligands coordinated as functionalised catecholate groups, allowing introduction of new functionalities into this class of complex. The complexes are poorly soluble in most organic solvents but were successfully characterised by ESI MS, IR and NMR spectroscopies. A detailed 1H and 13C NMR study on [Au(dhb)(tolpy)] shows that it exists as two isomers with regard to the position of the aldehyde group compared to the cycloaurated ring system; DFT calculations were carried out in order to provide some insight on the spectroscopic assignment of the two isomers.  相似文献   

2.
Gold(III) and gold(I) anionic salts mediate the 1,3-dipolar cycloaddition of N-benzyl-C(2-pyridyl)nitrone (2-PyBN) (1) and methyl acrylate (2) (gold 5-10 mol% with respect to the nitrone) decreasing the reaction time and favouring the formation of the exo (cis) isomer. The best catalyst found was Na[AuCl4] (7) able to perform the addition reaction in 56 h (instead of the 96 h required for the control experiment) and giving an endo/exo relation between isomers of 44/56 (as opposed to 73/27, blank reaction). The catalytic activity of several organometallic gold complexes with the radicals pentafluorophenyl (C6F5) or mesityl (2,4,6-(CH3)3C6H2) has been also investigated. In some cases the activity is very similar to that obtained with inorganic salts. With the aim of identifying possible metallic intermediates in the cycloaddition reaction, novel gold(III) and gold(I) nitrone derivatives such as [Au(C6F5)Cl2(2-PyBN)] (21), [Au(C6F5)2Cl(2-PyBN)] (22) and [Au(C6F5)(2-PyBN)] (23) have been prepared and characterized. The reaction between [AuCl3(tht)] and 2-PyBN unexpectedly affords the ionic compound [2-PyBN-H][AuCl4] (5) which also displays catalytic activity and moderate regioselectivity and whose crystal structure has been confirmed by X-ray studies.  相似文献   

3.
Three new imidazole compounds, [CuBr2(mimc)2] (1), [Ag(mimc)2][CF3SO3] (2), and [AuCl3(mimc)] (3) (mimc = 1-methylimidazole-2-carbaldehyde), have been synthesized, structurally characterized, and further analyzed using the QTAIM analysis. The compounds exhibit self-assembled 3D networks arising from intermolecular non-covalent interactions such as metallophilic interactions, metal-π contacts, halogens–halogen interactions, and hydrogen bonds. These weak interactions have a strong impact on the coordination sphere of the metal atoms and on the packing of compounds 1, 2, and 3.  相似文献   

4.
Three novel Cu(II)-pyrazine-2,3-dicarboxylate complexes with 1,3-propanediamine (pen), [Cu2(μ-pzdc)2(pen)2] · 2H2O (1), N,N,N,N′-tetramethylethylenediamine (tmen), {[Cu(μ-pzdc)(tmen)] · H2O}n(2), and 2,2′-bipyridine (bipy), {[Cu(μ-pzdc)(bipy)]·H2O}n(3) have been synthesized and characterized by means of elemental and thermal analyses, magnetic susceptibilities, IR and UV/vis spectroscopic studies. The molecular structures of dinuclear (1) and polynuclear (2 and 3) complexes have been determined by the single crystal X-ray diffraction technique. The pyrazine-2,3-dicarboxylate acts as a bridging ligand through oxygen atom of carboxylate group and N atom of pyrazine ring and one oxygen atom of neighboring carboxylate. It links the Cu(II) ions to generate a distorted square pyramidal geometry forming a one-dimensional (1D) chain. Adjacent chains of 1 and 2 are then mutually linked via hydrogen bonding interactions, which are further assembled to form a two and three-dimensional network, respectively. The chains of complex 3 are further constructed to form three-dimensional framework by hydrogen bonding, C–H?π and ring?ring stacking interactions. In the complexes, Cu(II) ions have distorted square pyramidal geometry. Thermal analyses properties and thermal decomposition mechanism of complexes have been investigated by using thermal analyses techniques (TG, DTG and DTA).  相似文献   

5.
The chemisorption interaction between the binuclear cadmium diethyl dithiocarbamate (EDtc), [Cd2{S2CN(C2H5)2}4], (chemisorbent I) and AuCl3 solutions in 2 M HCl results in the formation of polymeric gold(III) complexes: ([Au{S2CN(C2H5)2}2][AuCl4]) n (II) and [Au{S2CN(C2H5)2}Cl2] n (III) with the same Au : EDtc : Cl ratio (1 : 1 : 2). The alternating centrosymmetric cations and anions of complex II are structurally self-assembled to form linear polymeric chains: the gold atom in [Au{S2CN(C2H5)2}2]+ forms secondary Au(1)?Cl(1) bonds (3.7784 Å) with two neighboring [AuCl4]? anions. This binding is additionally strengthened by secondary S(1)?Cl(1) interactions (3.4993 Å). The mixed-ligand complex III comprises two structurally non-equivalent molecules [Au{S2CN(C2H5)2}Cl2]: A—Au(1) and B—Au(2), each being in contact with two nearest neighbors through pairs of unsymmetrical secondary bonds: Au(1)?S(1)a/b 3.4361/3.6329; and Au(2)?S(4)c/d 3.4340/3.6398 Å. At the supramolecular level, this gives rise to independent zigzag-like polymeric chains, (?A?A?A?) n and (?B?B?B?) n along which antiparallel isomeric molecules of III alternate. The chemisorption capacity of cadmium diethyl dithiocarbamate calculated from the gold(III) binding reaction is 963.2 mg of gold per 1 g of the sorbent. The recovery conditions for the bound gold were elucidated by simultaneous thermal analysis of II and III. The DSC curves reflect different sets of heat effects, because thermolysis occurs for complex molecules (III) or for cations and anions (II). Nevertheless, the patterns of experimental TG curves are similar despite different structures of the complexes. The final product of thermal transformations is reduced gold.  相似文献   

6.
Reactions of chlorodithiophosphoric acid pyridiniumbetaine, py.PS2Cl (I) with 1-aminoadamantane (amantadine, Am) and 1-amino-3,5-dimethyladamantane (memantine, Mem), 1-(adamant-1-yl)ethylamine (rimantadine, Rim), and 1-aminomethyladamantane (amAd) were studied. New compounds – N,N′,N′′,N′′′-tetrakis(adamant-1-yl)trithiophosphoric acic tetraamide (II), N,N′,N′′,N′′′-tetrakis(3,5-dimethyladamant-1-yl)trithiophosphoric acid tetraamide (III), chlorodithiophosphoric acid 1-(adamant-1-yl)ethylamide pyridiniumbetaine (IV), pyridinium salt of 1,3-bis(adamant-1-yl)ethane-2,4-mercapto-2,4-dithioxo-1,3-diaza-2λ5,4λ5-diphosphetidine (V), N,N′,N′′,N′′′-tetrakis(adamant-1-ylmethyl)trithiophosphoric acid tetraamide (VI), and pyridinium salt of 1,2-bis(adamant-1-ylmethane)-4-mercapto-2,4-dithioxo-1-aza-3-thia-2λ5,4λ5-diphosphetidine (VII) – were prepared and characterized either/or by 31P NMR and infrared spectroscopy, the substances II a IV by X-ray diffraction analysis, III, V, VI, VII by MALDI TOF MS.  相似文献   

7.
The reactions of the cycloaurated gold(III) complexes (2-bp)AuCl2 (2-bp = 2-benzylpyridyl) or (damp)AuCl2 (damp = Me2NCH2C6H4) with an excess of sodium saccharinate (Nasacc), potassium phthalimidate (Kphth), or with isatin and trimethylamine in refluxing methanol results in the successful isolation of a series of new gold(III) imidate complexes. These were characterised by NMR and IR spectroscopies, and by X-ray structure determinations on (2-bp)Au(sacc)2 and (2-bp)Au(phth)2. In both structures, the planes of the saccharinate and the phthalimidate ligands are orientated almost perpendicular to the gold coordination plane. As expected from trans-influence considerations, the Au–N(imidate) bond lengths trans to the aryl carbon atoms are longer than the Au–N(imidate) bond lengths trans to the pyridyl groups. The complexes have also been characterised by electrospray ionisation MS; in the presence of halide ligands, one imidate ligand is readily displaced. Anti-tumour (P388 murine leukemia) and selected anti-microbial data for the new complexes are reported. Surprisingly, all three damp complexes had low anti-tumour activity, which is likely to be a consequence of the poor solubility of these complexes. The synthesis and characterisation of a related gold(III) bis(amidate) complex derived from sulfathiazole is also described.  相似文献   

8.
A series of dioxomolybdenum(VI) complexes with similar hydrazone ligands have been prepared, specifically [MoO2L1(MeOH)] (1), [MoO2L2(MeOH)] (2) and [MoO2L3(MeOH)] (3), where L1, L2 and L3 are the dianionic forms of 2-chloro-N′-(2-hydroxybenzylidene)benzohydrazide, 2-chloro-N′-(2-hydroxy-5-methylbenzylidene)benzohydrazide and N′-(3-bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide, respectively. The complexes were characterized by physicochemical and spectroscopic methods and also by single-crystal X-ray determination. The hydrazone ligands coordinate to the Mo atoms through their phenolate O, imine N and enolic O atoms. The Mo atoms are six-coordinated in octahedral geometries. The complexes show high catalytic activities and selectivities in the epoxidation of cyclohexene with tert-butylhydroperoxide as primary oxidant.  相似文献   

9.
《Tetrahedron: Asymmetry》2007,18(6):729-733
Novel chiral tetraaza ligands, N1,N2-bis(2-(piperidin-1-yl)benzylidene)cyclohexane-1,2-diamine 1 and N1,N2-bis(2-(piperidin-1-yl)benzyl)cyclohexane-1,2-diamine 2, have been synthesized and fully characterized by analytical and spectroscopic methods. The structure of (R,R)-1 has been established by X-ray crystallography. Asymmetric transfer hydrogenation of aromatic ketones with the catalysts prepared in situ from [IrHCl2(COD)]2 and the chiral tetraaza ligands in 2-propanol gave the corresponding optically active secondary alcohols in high conversions and good ees (up to 91%) under mild reaction conditions.  相似文献   

10.
Tris[2-(N-ethyl)benzimidazylmethyl]amine (Etntb) and two of its complexes, [Zn(Etntb)(cinnamate)]NO3·2DMF (1) and [Ni(Etntb)(cinnamate)·(H2O)]NO3 (2) have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray diffraction revealed that the complexes have different structures. In complex 1, the coordination sphere around Zn(II) is distorted trigonal bipyramidal, whereas the coordination sphere around Ni(II) is distorted octahedral in complex 2. The DNA-binding properties of the free ligand and its complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the ligand and both complexes bind to DNA via an intercalative mode, and their binding affinity for DNA follows the order 1 > 2> ligand.  相似文献   

11.
《印度化学会志》2021,98(2):100006
The new cis-dioxomolybdenum (VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3)(H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 = N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide) have been synthesized and characterized via IR, 1H and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The catalytic activities of complexes 2 and 3, and the analogous known complex [MoO2(L1)(H2O)] (1) (H2L1 = N'-(2-hydroxybenzylidene)-4-methylbenzohydrazide) have been evaluated for various oxidation reactions, viz. oxygen atom transfer from dimethyl sulfoxide to triphenylphosphine, sulfoxidation of methyl-p-tolylsulfide or epoxidation of different alkenes using tert-butyl hydroperoxide as terminal oxidant. The catalytic activities were found to be comparable for all three complexes, but complexes 1 and 3 showed better catalytic performances than complex 2, which contains a more sterically demanding ligand than the other two complexes.  相似文献   

12.
The reaction of gold(III) neutral complexes AuBr(CN)2(N–N) {N–N = 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (Me2bpy), 1,10-phenanthroline (phen)} with a stoichiometric amount of K[AuCl4] · 2H2O in nitromethane at room temperature led to the formation of 1:1 electrolytes which were characterized by NMR and IR spectroscopy, conductivity measurements, elemental analyses and X-ray diffraction. Both the anions and the cations of these salts are singly charged square-planar Au(III) complexes and the cations have general formula [AuCl2(N–N)]+. A hypothesis on the possible reaction mechanisms is presented to give an explanation for the formation of the reaction products.  相似文献   

13.
The μ-oxo-bridged Fe(III) dimer complex [{Fe(4-MeOL1)}2(μ-O)]?HOCH3, (H2-4-MeOL1 = N,N′-bis(4-methoxy-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine), 1 is synthesized and characterized by single crystal X-ray diffraction. Complex 1 contains a [{Fe(4-MeOL1)}2(μ-O)] dimeric unit with a methanol solvent molecule of crystallization. Each Fe(III) ion has a distorted square-pyramidal coordination geometry. In the basal plane, the Fe(III) atom is coordinated by two N and two O atoms of the Schiff base ligand. The apical position is occupied by a bridging O2– ion, linking another Fe(III) ion in the complex. There are intermolecular C–H…O and C–H…π interactions among the dinuclear complexes.  相似文献   

14.
Zinc(II) and mercury(II) thiocyanate complexes with nicotinamide, bis(nicotinamide-N)-bis(thiocyanato-N)zinc(II) (1) and catena-[nicotinamide-N-(μ-thiocyanato-S,N)(thiocyanato-S)mercury(II)] (2), have been prepared and characterized by spectroscopic, thermal and X-ray crystallographic methods. The vibrational bands of diagnostic value are compared to the values of the free ligand and the data are in good correlation with the X-ray results. Centrosymmetrical hydrogen bonded dimers are found, R22(10) in 1 and R22(8) in 2.  相似文献   

15.
Six new gold(III) complexes [Au(bzpam)Cl2] (1, bzpamH = N‐benzyl picolinamide), [Au(hetpam)Cl2] (2, hetpamH = N‐(2‐hydroxyethyl) picolinamide), [Au(pypam)Cl]AuCl4 (3, pypamH = N‐(pyridin‐2‐ylmethyl) picolinamide), [Au(dmepam)Cl]AuCl4 (4, dmepamH = N‐(2‐(dimethylamino)ethyl) picolinamide), [Au(bhetpydam)Cl] (5, bhetpydamH2 = N,N′‐bis(2‐hydroxyethyl) pyridine‐ 2,6‐dicarboxamide) and [Au2(hedam)Cl4] (6, hedamH2 = N,N′‐(hexane‐1,6‐diyl) dipicolinamide) with deprotonated pyridyl carboxamide were synthesized and characterized by elemental analysis, molar conductivity, IR, H1 NMR and C13 NMR techniques. The analytical data showed that deprotonated pyridyl carboxamide coordinated with gold(III) ions through a nitrogen atom. The cytotoxicity against Bel‐7402 and HL‐60 cell lines was tested by MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) and SRB (sulforhodamine B) assays. The results indicated that the complexes exerted cytotoxic effects against Bel‐7402 and HL‐60 cell lines, complex 6 had better cytotoxicity than cisplatin, and complex 3 displayed similar cytotoxicity to cisplatin against Bel‐7402 cell line. The results suggested that the characteristics of ligands had an important effect on cytotoxicity of complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Syntheses, characterizations, electrochemistry and catalytic properties for styrene epoxidation of three manganese(III) compounds [MnIIIL1(H2O)(MeOH)](ClO4) (1) [MnIIIL1(N3)(H2O)]·dmf (2) [MnIIIL1(Cl)(H2O)] (3) derived from the Schiff base compartmental ligand N,N′-o-phenylenebis(3-ethoxysalicylaldimine) (H2L1) are reported. The three compounds are characterized by elemental analyses, IR, mass and UV–Vis spectra and conductance values. Single crystal X-ray structures of 1 and 2 have been determined. The structures of 1 and 2 show that these are mononuclear compounds having a salen type structure. In both structures, a dinuclear species is formed by bifurcated hydrogen bonding involving coordinated water molecule. The coordination of chloride in 3 is shown by conductance measurements. The compounds have also been characterized by UV–Vis and mass spectroscopic studies. Cyclic voltammetric and square wave voltammetric studies of the three compounds reveal that these undergo Mn(III)/Mn(II) reduction reversibly with the order of the ease of reduction as 3 > 2 > 1. This order has been explained proposing the composition of active species in solution. Catalytic properties for epoxidation of styrene by all the three complexes using PhIO and NaOCl as oxidant have been studied. The order of both the styrene conversion and styrene epoxidation using the three title compounds is 3 > 1 > 2. Again, it has been observed that more efficient conversion and epoxidation take place when PhIO is used as oxidant.  相似文献   

17.
New hexa-coordinated Ru(II) complexes of the type [RuCl2(DMSO)2(diamine)] (diamine = o-phenylenediamine and ethylenediamine) have been prepared by reacting cis-[RuCl2(DMSO)4] with Schiff bases (H2sal-en, 1; H2nap-en, 2; H2sal-o-pdn, 3; H2nap-o-pdn, 4) in a 1:1 ratio. The ligands, which were expected to act as tetradentate (N2O2) chelates under the normal reaction conditions, were found to undergo hydrolytic cleavage to form the diamine and the corresponding aldehyde. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and1H NMR) data. Single-crystal X-ray analysis of the complex [RuCl2(DMSO)2(o-pndn)] revealed that the coordination environment around the ruthenium metal consists of a N2S2Cl2 octahedron.  相似文献   

18.
The first MnIII complexes with Schiff bases and tricyanomethanide-anion were synthesized: [Mn(salen)C(CN)3(H2O)] (1), [Mn(5-Brsalen)C(CN)3(H2O)] (2), [Mn(salpn)C(CN)3(H2O)] (3), [Mn(3-MeOsalen)C(CN)3(H2O)] (4), [Mn(5-Brsalen)(MeOH)(H2O)][C(CN)3] (5), and [Mn(3-MeOsalpn)(H2O)2][C(CN)3] (6), where SalenH2 is N,N′-bis(salicylidene)ethylenediamine, 5-BrsalenH2 is N,N′-bis(5-bromosalicylidene)ethylenediamine, SalpnH2 is N,N′-bis-(salicylidene)-1,3-diaminopropane, 3-MeOsalenH2 is N,N′-bis(3-methoxysalicylidene)-ethylenediamine, 3-MeOsalpnH2N,N′-bis(3-methoxysalicylidene)-1,3-diaminopropane. The tricyanomethanide anion in complexes 14 acts as a the terminal ligand, whereas in complexes 5 and 6 tricyanomethanide is not coordinated by MnIII and acts as an out-of-sphere counterion. The structures of complexes 14 are characterized by the formation of dimers due to hydrogen bonds between the water molecules and oxygen atoms of the Schiff bases. The Mn...Mn distances inside the dimers are 4.69–5.41 Å. Complex 6 has a zigzag chain structure consisting of the [Mn(3-MeOsalpn)(H2O)2]+ cations bound by double bridging aqua ligands. The study of the magnetic properties of complexes 1, 3, 4, and 6 showed the existence of antiferromagnetic interactions between the MnIII ions through the system of hydrogen bonds.  相似文献   

19.
Synthesis, spectroscopic characterization, theoretical and antimicrobial studies of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin (amox) antibiotic drug are presented in the current paper. Structure of 1: 1 (metal: amox) complexes were elucidated on the basis of elemental analyses, and IR, Raman, 1H NMR, and electronic spectral data. According to molar conductance measurements the complexes had electrolyte nature. Amoxicillin reacted with metal ions as a tridentate ligand coordinated with metal ions via–NH2,–NH, and β-lactam carbonyl groups. The complexes were formulated as [Ca(amox-Na)(H2O)]·Cl2·4H2O (1), [Fe(amox-Na)(H2O)3]·Cl3·3H2O (2), [Pd(amox-Na)(H2O)]·Cl2 (3), and [Au(amox-Na)(H2O)]·Cl3 (4). Kinetic thermodynamic parameters (E*, ΔS*, ΔH*, and ΔG*) were calculated based on the Coats–Redfern and Horowitz–Metzger methods using thermo gravimetric curves of TG and DTG. Nanosize particles of amoxicillin complexes have been studied by XRD, SEM, and TEM methods. Theoretical studies of the synthesized complexes have been performed.  相似文献   

20.
Four new coordination polymers were obtained by employing polycarboxylato spacers and cationic copper(II) complexes as nodes: 2[Cu3(trim)2(NH3)6(H2O)3] (1); 1[Cu(tmen)(dhtp)] (2), 1[Cu(tmen)(hitp)(H2O)] (3), 1[Cu(tmen)(nitp)] (4). (H3trim = trimesic acid, H2dhtp = 2,5-dihydroxy-terephthalic acid; H2hitp = 5-hydroxy-isophthalic acid, H2nitp = 5-nitro-isophthalic acid; tmen = N,N,N′,N′-tetramethyl-ethylenediamine). The crystal structures of the four compounds have been solved. Compound 1 consists of 2D coordination polymers with heart-shaped meshes, while compounds 24 contain infinite zigzag chains. The role of the hydrogen bond interactions in sustaining the supramolecular solid-state architectures in compounds 1 and 3 is discussed. The cryomagnetic investigation of compounds 1, 2, and 4 reveals antiferromagnetic interactions between the copper ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号