首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

2.
《印度化学会志》2023,100(2):100881
A modified sol-gel method was used for synthesis of zinc doped black TiO2 nanoparticles. The modified sol-gel synthesised catalyst was utilised for degradation of 2, 4, 6 tri-chloro-phenol under visible light irradiation. The catalyst was characterized using XRD, SEM, TEM, BET and DRS analysis. The nanoparticles were crystalline in nature and in anatase phase. The size of zinc doped black TiO2 nanoparticles was 5 nm. The synthesised nanoparticles were mesoporous in nature and the specific surface area was found to be 34.15 m2/g. The band gap energy of zinc black TiO2 nanoparticles was found to be 2.73 eV. The point of zero charge of zinc doped black TiO2 nanoparticles was 6.7. The maximum degradation of 2, 4, 6 tri-chloro-phenol using 2 mol% zinc doped black TiO2 was found to be 95%.  相似文献   

3.
An attempt was made to prepare Mn,Fe-codoped nanostructured TiO2 photocatalyst for visible light assisted degradation of an azo dye (methylene blue) in aqueous solutions by a sol-gel process. The asprepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) techniques. The photocatalytic activity of Mn,Fe-codoped TiO2 catalyst was evaluated by measuring degradation rates of methylene blue (MB) under visible light. The results showed that doping with the manganese and iron ions significantly enhanced the photocatalytic activity for MB degradation under visible light irradiation. This was ascribed to the fact that a small amount of manganese and iron dopants simultaneously increased MB adsorption capacity and separation efficiency of electron-hole pairs. The results of DRS showed that Mn,Fe-codoped TiO2 had significant absorption between 400 and 500 nm, which increased with the increase of manganese ion content. It is found that the stronger the PL intensity, the higher the photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions, so that the recombination of photoinduced electrons and holes could be effectively inhibited.  相似文献   

4.
有机改性TiO2光催化剂的制备及可见光催化性能   总被引:1,自引:0,他引:1  
姜东  徐耀  侯博  吴东  孙予罕 《化学学报》2007,65(14):1289-1293
以染料黄叱精(Chrysoidine G)和TiO2 (Degussa P25)为原料, 利用甲苯二异氰酸酯为桥连体, 成功合成了一种有机改性的TiO2光催化剂. 采用XRD, TEM, FT-IR, UV-Vis对所得催化剂进行了表征, 以亚甲基蓝降解为探针反应, 考察其可见光催化性能. 结果表明: 甲苯二异氰酸酯在黄叱精和TiO2之间形成了稳定的化学键, 从而实现了对TiO2的表面有机改性; 改性后的TiO2在可见光区(400~550 nm)有明显的吸收; 与未改性TiO2相比, 有机改性的TiO2催化剂在可见光照射下表现出了很好的光催化性能.  相似文献   

5.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

6.
Effective removal of organic pollutants from wastewater becomes notable research because of its ecological and environmental importance. In the present study Andrographis echioides leaf extract was used for the synthesis of calcium hydroxide nanoparticles (Ca(OH)2-NPs) from calcium oxide as the calcium source. The secondary metabolites present in the plant source act as a capping agent for the formation Ca(OH)2-NPs. Further NPs were applied for photocatalytic degradation. The intention of the approach is to be low-cost preparation and easy degradation (degradation of dye without any effect) to the environment. The synthesized Ca(OH)2-NPs was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, ultra violet diffuse reflectance spectroscopy, energy dispersive X-ray spectroscopy, zeta potential and high-resolution transmission electron microscopy. The photocatalytic degradation of methylene blue (dye pollutant) studied under three different light sources such as UV, visible and sun light using Ca(OH)2-NPs. Degradation efficiency of Methylene blue dye examined under UV–Vis spectroscopy. Degradation percentage of Ca(OH)2-NPs under UV, visible and sunlight are (98.96, 97.52 and 96.38%) respectively. The overall study suggests that Ca(OH)2-NPs exhibit excellent photocatalytic property against UV, visible and sunlight.  相似文献   

7.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

8.
采用浸渍法制备了MoO3/P25催化剂(MoO3/P25(x),x为MoO3与P25质量比),用X射线衍射、紫外-可见漫反射光谱、傅里叶变换红外光谱及拉曼光谱等手段对样品进行了表征,并用催化降解亚甲基蓝考察了催化剂在可见光区的催化活性。结果表明,MoO3在P25表面最大单层负载量对应的MoO3与P25质量比在0.1左右。单层分散的氧化钼物种与P25之间有较强的相互作用,降低了P25禁带宽度,提高了催化剂对可见光的吸收。当MoO3与P25质量比大于0.1时,会生成晶相MoO3,催化剂对可见光的吸收反而随MoO3担载量增加而降低。催化剂禁带宽度不是决定其可见光下催化降解亚甲基蓝活性的唯一因素。具有适宜禁带宽度和一定晶相MoO3含量的MoO3/P25(0.25)表现出最佳活性。  相似文献   

9.
ZnO nanoparticles were modified with KF using thermal shock method at various temperatures in order to improve the photocatalytic activity of ZnO under both UVA and visible light irradiation. The influences of KF-modification on the crystal structure, morphology, UV–visible absorption, specific surface area as well as surface structure of ZnO were respectively characterized by XRD, FE-SEM, UV–Visible diffuse reflectance, N2 adsorption and XPS spectroscopy. The photocatalytic activity was evaluated via the degradation of methylene blue under UVA irradiation. According to the results, the thermal shock process with KF did not modify the structure, the particle size and the optical properties of ZnO nanoparticles but successfully increase their UVA and visible light induced photocatalytic activity. This enhancement of activity may be attributed to the increase of surface hydroxyl groups and zinc vacancies of modified ZnO samples.  相似文献   

10.
The photocatalytic degradation of methylene blue is investigated in aqueous solution containing CoS/nanoAl-MCM-41 photocatalyst under visible light. The catalyst is characterized by X-ray diffraction (XRD), UV-vis diffused reflectance spectra (UV-vis DRS) and transmission electron microscopy (TEM) techniques. The effect of CoS, nanoAl-MCM-41 support and different wt% of CoS over the support on the photocatalytic degradation and influence of parameters such as CoS loading, catalyst amount, pH and initial concentration of methylene blue on degradation are evaluated. Hypsochromic effects (i.e. blue shifts of spectral bands) resulting from N-demethylation of the dimethylamino group in methylene blue occurs in presence of CoS/nanoAl-MCM-41 under ambient condition. Meanwhile, the bleaching of methylene blue MB, by sulfide ion, in an aqueous solution is studied in the presence nanoAl-MCM-41 catalyst. In the presence of sulfide ions, MB is bleached to its colorless leuco (LMB) and MBH(2)(+) forms. In an acidified solution (pH<2) the bleaching process generates LMB and by changing pH between 2.0 and 7.0 bleaching of MB dye to MBH(2)(+) form is observed. Using nanoAl-MCM-41 with encapsulated CoS nanoparticles only causes demethylation of MB in aqueous solution.  相似文献   

11.
《印度化学会志》2022,99(11):100744
ZnO nanoparticles are one of the prominent photocatalysts for environmental applications due to its high redox ability, nontoxic and higher stability. This report explains the synthesis of ZnO nanoparticles by a simple solution combustion method using zinc nitrate hexahydrate as an oxidizing agent and incense stick powder as fuel at 400 °C. Several techniques were adopted for the characterization of the obtained product. X-ray diffraction (XRD) pattern shows that a lower concentration of fuel gives pure ZnO and a higher concentration of fuel results in calcium doped ZnO with a cubic phase having a crystallite size of 32–28 nm. UV–vis spectrum shows that as the fuel concentration increases, band gap decreases and reaches to 3.33 eV for 3 g of fuel. Spongy networks with many pores wereobserved in the scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed the average particle size of Ca doped ZnO NPs is about 20 nm. Pure and Ca doped ZnO nanoparticles were examined for photocatalytic degradation of methylene blue (MB) dye under UV light irradiation. The results prove that Ca doped ZnO nanoparticles show good photocatalytic activity.  相似文献   

12.
A novel polyaniline/Bi(2)SnTiO(7 )composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi(2)SnTiO(7) have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi(2)SnTiO(7) was found to be a = 10.52582(8) ?. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi(2)SnTiO(7) as catalyst. The results showed that novel polyaniline/Bi(2)SnTiO(7 )possessed higher catalytic activity compared with Bi(2)InTaO(7) or pure TiO(2) or N-doped TiO(2) for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi(2)SnTiO(7) or N-doped TiO(2) as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min(-1). After visible light irradiation for 220 minutes with novel polyaniline/Bi(2)SnTiO(7 )as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO(4)2- and NO(3-), and the evolution of CO(2) revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.  相似文献   

13.
Heterogeneous photocatalytic degradation of N-containing R6G dye was achieved by visible light-activated carbon doped TiO2 (C-TiO2) nanoparticles, synthesized by a low-temperature wet-chemical technique using glucose as carbon source. The structural and physicochemical properties of C-TiO2 were characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and FT-IR spectroscopy. Compared with the pure TiO2, the carbon modified nanomaterials exhibited enhanced absorption in the broad visible-light region together with an apparent red shift in the optical absorption edge. The resulting carbon-doped TiO2 catalyst was employed as an effective photocatalyst for degradation of Rhodamine 6G (R6G) in aqueous solutions under visible light irradiation (λ > 420 nm). In addition, the intrinsic mechanism of visible light-induced photocatalytic oxidation of organic compounds on the carbon-doped titania was proposed and discussed.  相似文献   

14.
Dysprosium (Dy)‐doping SrMoO4 (with different molar ratio of Dy/Sr = 0/100, 10/100, 15/100 and 20/100) have been synthesized by high temperature thermal decomposition of metal–organic salt in organic solvent with a high boiling point. Their structures, morphology, and optical properties were characterized by X‐ray diffraction (XRD), high‐resolution tuning electron microscopy ((HR)TEM), X‐ray photo‐electron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). Using this method, the pure phase, nano‐size, and low band gap of SrMoO4 sample are obtained. The results shows that the size of as‐synthesized SrMoO4 nanoparticles was about 200 nm. The band gap of Dy‐doped SrMoO4 ranges from 3.76–3.90 eV, and decreases with increasing Dy concentration. The photocatalytic performance of as‐syntheszied products were determined from the degradation of methylene blue (MB) by UV–vis light irradiation. The 15 mol%Dy‐doped SrMoO4 sample shows the best performance for photocatalytic degradation of methyl blue of nearly 100% in 120 min under visible irradiation, which is higher than most of those reported before. The present work is meaningful for revealing the underlying mechanism in photocatalyst and improving the photocatalytic performance.  相似文献   

15.
Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron–hole stability. The crystalline nanocomposite was stable when the material was used several times.  相似文献   

16.
BiVO4-GO-PVDF (PVDF = Polyvinylidene Difluoride) photocatalyst is successfully synthesized by ultrasonication method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. Morphology of BiVO4-GO-PVDF looks like a human embryo embedded inside an amniotic sac. Photocatalytic performance of BiVO4-GO-PVDF for decolorization of methylene blue is investigated. BiVO4-GO-PVDF system reveals enhanced photocatalytic activity degradation of methylene blue (MB), Rhodamine B (RhB) & Safranin-O (SO) in water under visible light irradiation as compared to the pure BiVO4 catalyst, BiVO4 & PTFE decorated on the graphene sheet. The experimental result reveals that the covering of graphene sheets in this composite catalyst enhances photocatalytic performance under visible light. This enhanced activity is mainly attributed to effective quenching of the photogenerated electron-hole pairs confirmed by photoluminescence spectra. Trapping experiments of radicals and holes were conducted to detect reactive species generated in the photocatalytic system, experimental results revealed that direct hole oxidation reaction is obviously dominant during photocatalytic reactions on the BiVO4-GO-PVDF system.  相似文献   

17.
以介孔γ-Al2O3为载体,通过化学沉积与光还原法制备了Ag-AgBr/Al2O3等离子体诱导可见光催化材料。采用SEM、TEM、XRD及UV-Vis吸收光谱对复合材料进行结构与性能表征,并通过降解亚甲基蓝溶液对其光催化性能进行考察。研究结果表明,在可见光下照射1 h,催化材料对5 mg/L亚甲基蓝溶液的降解率达95%以上,总有机碳去除率为70%。由于表面金属的等离子体共振效应和介孔材料的吸附性能,催化剂具有很高的可见光催化活性和良好的稳定性,在开发新型等离子体诱导可见光催化剂方面应用前景广阔。  相似文献   

18.
In this study, trimetallic catalysts were prepared via the co-precipitation and impregnation methods. In order to investigate the effect of impregnation on the catalytic activity and crystallite size, a trimetallic catalyst, Fe—Ni—Ce, was prepared through the co-precipitation method in one set of experiments, and cerium was impregnated with the Ni—Fe mixture in the final stage of the preparation in another set. Fourier transform infrared spectroscopy was employed to confirm the formation of trimetallic catalysts and the success of the impregnation method. The Brunauer-Emmett-Teller nitrogen adsorption isotherm exhibits a high specific surface area (approximately 39 m2 g?1) for the nanoparticles obtained by the impregnation method. The crystallography and morphology of the trimetallic catalysts thus prepared were characterised by X-ray diffraction and scanning electron microscopy. UV-VIS spectroscopy and methylene blue dye degradation tests were also performed to investigate the catalytic activity of the synthesised catalysts. The crystalline size was found to be smaller for the catalysts prepared by the impregnation method. In addition, the samples synthesised using the cerium impregnation method showed superior activity in the methylene blue dye degradation test. The effect of the catalyst dosage on dye degradation, as well as the effect of the initial dye concentration on the catalyst activity, was also studied for both methods.  相似文献   

19.
The present study is focused on the integration of microreactors to synthesize visible light active nanophotocatalysts for inline photocatalytic degradation of organic dye and antibacterial activity. A wire-assisted and a rapid laser micromachining technique has been employed for the fabrication of polydimethylsiloxane (PDMS) and poly(methyl methacrylate) (PMMA)-based microreactors, respectively. By varying the design and chemical reagents involved, different sizes of visible light active Ag2S nanoparticles were prepared via a continuous microfluidics approach using fabricated microreactors. When polyvinylpyrrolidone (PVP) was utilized as the capping agent during the reaction, smaller particles of the size of ~ 15 nm were observed. The photocatalytic performance of these nanoparticles has been evaluated inline by employing the single-inlet planar microreactor as a function of flow rate and channel length. The photocatalyst durability test and a comparative photocatalytic efficiency study between the microreactor and the conventional beaker reactor have also been carried out. Under visible light, these nanoparticles exhibit a remarkable enhancement of ~ 94.5% in the inline microreactor-based photocatalytic degradation of methylene blue dye. The slower the flow rate and longer the channel length, gradual enhancement in the performance has been observed. Also, these nanoparticles express an antibacterial effect with very high efficacy even at very low (2 mg mL−1) concentration toward the inhibition of Escherichia Coli.  相似文献   

20.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号