首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
Body temperature in medicine is a parameter indicating abnormal activity of human tissues; it is used to diagnose specific pathologies or as an indicator of the muscle activity during physical exercise.Temperature measurements through infrared thermography have the advantages to be non-invasive and to record temperature data simultaneously from different points on a wide area of the body.The difference between the values of temperature traditionally measured with contact probes or standard technique and the ones measured by thermal imaging lies in the fact that the first produces a scalar value, while the second gives a distribution over a surface. The analysis of thermographic images, with the goal of obtaining a temperature value representative of a specific area, is usually performed by different methods of averaging temperature values inside a selected Region of Interest (Troi and Tot). In this paper the authors present a critical comparison between the methods mainly used in literature in the specific case of a muscular group of calves on a population of 33 healthy subjects. Here, the authors describe an alternative method (Tmax) to obtain a temperature value of a specific area based on maximal temperature detection instead of considering the average temperature on the selected area. No meaningful difference in mean temperature between Troi and Ttot was found (p = 0.9), while temperature values calculated using Tmax were higher than the above methods (p < 0.001). The high correlation among the compared methods prove that they can equally represent temperature trends in cutaneous thermographic analyses.  相似文献   

2.
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.  相似文献   

3.
Training with blood flow restriction could lead to an effect on skin temperature. Additionally, this effect could be higher in people with lower physical fitness level due to their lower capacity of heat loss. The aim of this preliminary study was therefore to evaluate the effects of training experience on the acute and chronic thermal skin responses after performing exercise with and without blood flow restriction. The study included ten men, of these, five were trained. All subjects performed tests and re-tests for maximum strength (1 repetition maximum) through unilateral leg extensions (right thigh at 45 ± 6.7 kg and left thigh at 45.5 ± 8.1 kg, p > 0.05). The protocol consisted of four sets to concentric failure, with one-minute rest intervals between sets at an intensity corresponding to 40% of 1 RM. There were 7-day intervals between experimental sessions (150 mmHg versus unrestricted flow restriction). The thermal images were made before the protocol (pre), immediately after the end of the series (post), and 24 h afterward (post 24 h). When comparing temperature variation (Δ exercise and Δ 24 h) between groups, it was observed that the trained participants showed a greater drop in temperature 24 h after exercise with 150 mmHg restriction (confidence interval: 95% of Δ 24 h [−0.2 to −0.9 °C]) compared to untrained subjects (p = 0.006 and ES > 1.5, confidence interval: 95% Δ 24 h [−0.1 to 0.6 °C].) In conclusion, this preliminary study showed that training experience interferes with the chronic cutaneous thermal temperature of the anterior thigh when strength training associated with blood flow restriction 150 mmHg was performed.  相似文献   

4.
IntroductionWheelchair Users (WCUs) depend on their upper extremities for their daily living. Therefore, it is not unusual to find that shoulder pain (SP) is a problem for WCUs and reduces their participation in sport and leisure activities.ObjectivesThe aims of this study were 1 – to analyse skin temperature measured by infrared thermography (IRT) before (pre-test), one minute after (post-test) and 10 min after (post-10) the kinematic wheelchair propulsion test (T-CIDIF) of athletic wheelchair users; 2 – to evaluate the relationship between shoulder pain (SP) and Skin Temperature Asymmetry (ΔTsk) before and after (pre-test, post-test, post-10) the T-CIDIF, and to relate the SP with the kinematic variables of the T-CIDIF.Participants & interventions/procedureA volunteer sample of 12 wheelchair athletes completed an exercise test (T-CIDIF) in their own wheelchair. It consisted in a 30-s maximum test performed on two rollers. Two linear transducers connected to the rollers registered the number of propulsions, maximum and mean velocity and power of each arm. SP was assessed with the Wheelchair Users Shoulder Pain Index (WUSPI). Skin temperature (Tsk) of the anterior and posterior upper body was measured before and after the T-CIDIF by using an infrared camera. A total of 26 ROIs were evaluated with respect to the opposite side of the body to identify significant (ΔTsk).Results/main outcome measure(s)Significant differences were observed between the Tsk of the post-10 and pre-test in 12 ROIs, and between the post-10 and the post-test in most of the ROIs. These differences are attenuated when the ΔTsk is compared before and after exercise. Tsk tends to initially decrease immediately after the test and then significantly increase after 10 min of completing the T-CIDIF. The ΔTsk vs SP analysis yielded significant inverse relationships (from r = −0.58 to r = −0.71, p < 0.05) in 5 of the 26 ROI. No significant correlations between propulsion variables and SP questionnaire were found. All T-CIDIF variables were significantly correlated with the temperature asymmetries in multiple ROIs (from r = −0.86 to r = −0.58, from p < 0.05 to p < 0.001).ConclusionsThese results present indications that high performance wheelchair athletes exhibit similar capacity of heat production than able-bodied. The thermographic data inversely correlates with the SP and the kinematic variables, but the last is not related to SP. This work contributes to improve the understanding about temperature changes in wheelchair athletes during exercise, and could be used to assess the efficacy of various sports and rehabilitation programs.  相似文献   

5.
Thermography for scientific research and practical purposes requires a series of procedures to obtain images that should be standardized; one of the most important is the time required for acclimatization in the controlled environment. Thus, the objective of this study was to identify the appropriate acclimatization time in rest to reach a thermal balance on young people skin. Forty-four subjects participated in the study, 18 men (22.3 ± 3.1 years) and 26 women (21.7 ± 2.5 years). Thermographic images were collected using a thermal imager (Fluke®), totaling 44 images over a period of 20 min. The skin temperature (TSK) was measured at the point of examination which included the 0 min, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20. The body regions of interest (ROI) analyzed included the hands, forearms, arms, thighs, legs, chest and abdomen. We used the Friedman test with post hoc Dunn’s in order to establish the time at rest required to obtain a TSK balance and the Mann–Whitney test was used to compare age, BMI, body fat percentage and temperature variations between men and women, considering always a significance level of p < 0.05. Results showed that women had significantly higher temperature variations than men (p < 0.01) along the time. In men, only the body region of the abdomen obtained a significant variance (p < 0.05) on the analyzed period, both in the anterior and posterior part. In women, the anterior abdomen and thighs, and the posterior part of the hands, forearms and abdomen showed significant differences (p < 0.05). Based on our results, it can be concluded that the time in rest condition required reaching a TSK balance in young men and women is variable, but for whole body analysis it is recommended at least 10 min for both sexes.  相似文献   

6.
New solid electrolytes containing acetamide and lithium bioxalato borate (LiBOB) with different molar ratios have been investigated. Their melting points (Tm) are around 42 °C. The ionic conductivities and activation energies vary drastically below and above Tm, indicating a typical feature of phase transition electrolyte. The ionic conductivity of the LiBOB/acetamide electrolyte with a molar ratio of 1:8 is 5 × 10? 8 S cm? 1 at 25 °C but increases to 4 × 10? 3 S cm? 1 at 60 °C. It was found that anode materials, such as graphite and Li4Ti5O12, could not discharge and charge properly in this electrolyte at 60 °C due to the difficulty in forming a stable passivating layer on the anodes. However, a Li/LiFePO4 cell with this electrolyte can be charged properly after heating to 60 °C, but cannot be charged at room temperature. Although the LiBOB/acetamide electrolytes are not suitable for Li-ion batteries due to poor electrode compatibility, the current results indicate that a solid electrolyte with a slightly higher phase transition temperature than room temperature may find potential application in stationary battery for energy storage where the electrolyte is at high conductive liquid state at elevated temperature and low conductive solid state at low temperature. The interaction between acetamide and LiBOB in the electrolyte is also studied by Raman and FTIR spectroscopy.  相似文献   

7.
We studied the influence of the growth temperature and HCl flow rate on the morphological evolution of crack-free thick GaN films by using a home-made horizontal hydride vapor phase epitaxy on sapphire substrates. Optical difference microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathodoluminescence (CL) were carried out to reveal the surface property of the GaN epilayer. It was found that the higher growth temperature is a key factor to obtain mirror, colorless and flat GaN surface. However, this key effect of temperature was modulated by HCl flow rate (HCl > 15 sccm). The surface RMS roughness was reduced from 206 to 2.51 nm for 10 μm × 10 μm scan area when GaN was grown at 1070 °C with HCl flow rate up to 30 sccm. These samples also reduced their (0 0 0 2) FWHM result from 1000 to 300 arcsec and showed a strong near-band-edge peak in CL spectra. Results indicated that growth temperature influence growth velocities on different crystalline planes, which will lead to the different morphologies obtained. High growth temperature can improve the lateral growth rate of vertical {1 1 ? 2 0} facets and reduce the vertical growth rate of top {0 0 0 1} facet combined with higher HCl flow rate, which leads to completely coalescence of surface.  相似文献   

8.
The goals of this study are to characterize the temporal dynamics of inter-regional connectivity of the brain in chronic headache (CH) patients versus their age/gender matched controls (CONCH, n = 28 pairs), and to determine whether dynamic measures reveal additional features to static functional connectivity and correlate with psychometric scores. Cortical thickness and inter-regional resting state fMRI connectivity were quantified and compared between CH and CONCH groups. Six cortical regions of interest (ROI) pairs that exhibited correlated cortical thickness and static functional connectivity abnormalities were selected for temporal dynamic analysis. Two methods were used: temporal sliding-window (SW) and wavelet transformation coherence (WTC). SW analyses using three temporal windows of 30, 60, 120 s revealed that all six ROI pairs of CH exhibited higher percentage of strong connectivity (high r values), and smaller fast Fourier transform (FFT) amplitudes at a very low frequency range (i.e., 0.002–0.01 Hz), compared to those of CONCH. These features were particularly prevalent in the 120 s window analysis. Less variable dynamic fluctuation (i.e., smaller standard deviation of r values) was identified in two out of six ROI pairs in CH. WTC analysis revealed that time-averaged coherence was generally greater in CH than CONCH between wavelet decomposition scales 20 to 55 (0.018–0.05 Hz), and was statistically significant in three out of six ROI pairs. Together, the most robust and significant differences in temporal dynamics between CH and CONCH were detected in two ROI pairs: left medial-orbitofrontal–left posterior-cingulate and left medial-orbitofrontal–left inferior-temporal. The high degrees of sleep disturbance (high PSQI score), depression (high HRSD score) and fatigue (low SF-36 score) were associated with high degree of inter-regional temporal coherence in CH. In summary, these dynamic functional connectivity (dFC) measures uncovered a temporal “lock-down” condition in a subset of ROI pairs, showing static functional connectivity changes in CH patients. This study provides important evidence for the presence of associated psychological wellbeing and abnormal temporal dynamics in between specific cortical regions in CH patients.  相似文献   

9.
It is shown that perovskite NdMnO3 is a weak ferromagnet with an anomalous magnetization behavior due to Nd sublattice contribution. Ferromagnetic component drastically increases whereas TN slightly decreases when a part of manganese ions is replaced with Cr, Al, Fe, Zn. It is suggested that the Mn3+–O–Mn3+ superexchange interaction changes a sign in the microdomains enriched with Me=Cr, Al, Fe, Zn ions due to removing static Jahn–Teller distortions. All these substituted perovskites show a sharp drop of the magnetization as temperature decreases. A large temperature hysteresis indicates first-order phase transition. Below this transition neodymium magnetic moments orient opposite to a moment of manganese magnetic sublattice. It is supposed that this phase transition results from a change of the ground state of Nd ions.  相似文献   

10.
The Cr 2p and O 1s binding energy (BE) levels have been calculated by first principles methods for different models of hydroxylated (0001)-Cr2O3 surfaces. Several surface terminations have been considered. The calculations allow us to reproduce the O 1s shifts between O in oxide and OH groups. It is found that two main effects account for the OH binding energy shifts. On the one hand, the increased covalency of the O–H bond with respect to the Cr–O bond, lowers the electronic O (1s and 2p) energy, and in consequence the BE of the core levels (O 1s) are higher. On the other hand, the lower the OH coordination number, the higher the valence and core levels energy, and the lower the BE. Consequently, mono-coordinated hydroxyls have a binding energy near that of O2? in the oxide (ΔBEOH–O = ? 0.2–0.0 eV). Two-fold coordinated hydroxyls have a slightly higher BE (ΔBEOH–O = + 0.3 eV). Three-fold coordinated OH groups have a higher binding energy (ΔBEOH–O = + 0.6?0.7 eV), corresponding to that experimentally measured for OH groups. Finally, water adsorbed above OH groups exhibits a still higher BE (ΔBEHOH–O = + 0.9–1.0 eV). The ΔBE are slightly under-estimated under the initial state approximation, and overestimated under the final state (Z + 1) approximation.  相似文献   

11.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

12.
PurposeTo determine if tumor stiffness by MR Elastography (MRE) is associated with hepatocellular carcinoma (HCC) pathologic features.Material and methodsA retrospective review was undertaken of all patients with pathologically confirmed HCC who underwent MRE prior to loco-regional therapy, surgical resection or transplant between 1/1/2007 to 12/31/2015. An independent observer measured tumor stiffness (kilopascals, kPa) by drawing regions of interest (ROI) covering the HCC and in the case of HCCs with non-enhancing/necrotic components, only the solid portion was included in the ROI. HCC tumor grade (WHO criteria), vascular invasion and tumor encapsulation were assessed from retrievable pathology specimens by an expert hepatobiliary pathologist. Tumor stiffness was compared by tumor grade, size, presence of capsule and vascular invasion using Student's t-test (or Exact Mann-Whitney test).Results21 patients were identified who had pathologically confirmed HCCs and tumor MRE data. 17 patients (81.0%) had underlying chronic liver disease. The mean ± SD tumor size (cm) was 5.3 ± 3.9 cm. The mean ± SD tumor stiffness was 5.9 ± 1.4 kPa. Tumors were graded as well differentiated (N = 2), moderately differentiated (N = 11) and poorly differentiated (N = 8). There was a trend toward increased tumor stiffness in well/moderately differentiated HCCs (6.5 ± 1.2 kPa; N = 13) compared to poorly differentiated HCCs (4.9 ± 1.2 kPa; N = 8) (p < 0.01). There was no significant correlation between tumor stiffness and liver stiffness or tumor size. There was no significant difference in tumor stiffness by presence or etiology of chronic liver disease, vascular invasion or tumor encapsulation.ConclusionPreliminary data suggest that tumor stiffness by MRE may be able to differentiate HCC tumor grade.  相似文献   

13.
《Solid State Ionics》2006,177(26-32):2611-2615
Mechanical milling (MM) has been used to prepare the nanosized Li1.4Al0.4Ti1.6(PO4)3 (denoted LATP) glassy powders, which was converted into glass-ceramics through thermal treating at 700–1000 °C. The XRD, TEM, FESEM and ac impedance techniques were used to characterize the products. The results showed that completely amorphous products were prepared by MM for 40 h, and single-phase LiTi2(PO4)3-type structured glass-ceramics were obtained by further heat treatment. The lithium ion conductivity of the glass-ceramics increased with the growth of the crystalline phase and decrease of the grain size. The highest bulk conductivity (σb) of 1.09 × 10 3 S cm 1 with an energy of activation as low as 0.28 eV was obtained at room temperature for the specimen treated at 900 °C for 6 h. The high conductivity, easy fabrication and low cost make the LATP glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li-ion rechargeable batteries.  相似文献   

14.
Exploiting the mechanically controllable break junction technique, we have measured the conductance of atom-sized contacts of Fe, Co, and Ni at room temperature under ultrahigh vacuum conditions. The conductance histogram of Fe exhibits a broad peak around 2.5 G0 (G0  2e2/h), whereas those of Co and Ni show no conductance peaks. However, the histograms of Co and Ni display different structures: While the Co histogram is simply flat, the Ni histogram reveals an appreciable background. Our experimental results are compared with previous results obtained at cryogenic and room temperatures, and the observed peak missing in our room-temperature histograms of Co and Ni is discussed.  相似文献   

15.
Transport of electrons within a quantum cascade photodetector structure takes place with the help of the scattering of electrons by phonons. By calculating scattering rates of the electrons mediated by longitudinal optical phonons (the dominant scattering mechanism), current–voltage characteristic of a quantum cascade photodetector is calculated. The results indicate that with the increase of bias voltage dark current increases rapidly, then the increase becomes slow at higher voltages, whilst photocurrent remains approximately constant with only slight variations in its magnitude. With the increase of temperature from 80 K to 160 K dark current increases by about two orders of magnitude while photocurrent varies slightly, so that at the illuminating power of 1 mW/m2 photocurrent density increases in mean from 1.10×10−9 A/cm2 at 80 K to 1.14×10−9 A/cm2 at 160 K and then decreases to 1.03×10−9 A/cm2 at 240 K. Thus the responsivity of the detector varies only slightly with temperature. However owing to the decrease in the resistivity of the photodetector with the increase of temperature, Johnson noise limited detectivity decreases considerably.  相似文献   

16.
The aim of this work was to investigate possible sex differences in the patterns of sodium deposition between muscle and skin using sodium MRI. A total of 38 subjects were examined for comparisons: 20 males, aged 25–79 years with a median age of 51; 18 females, aged 38–66 years, median age 53. All subjects underwent sodium MRI scans of the calf muscles together with cross sections through four calibration standards containing known sodium contents (10 mM, 20 mM, 30 mM, and 40 mM). Tissue sodium concentrations (TSC) in muscle and skin were then calculated by comparing signal intensities between tissues and reference standards using a linear analysis. A Wilcoxon rank sum test was applied to the ΔTSC (= TSCmuscle  TSCskin) series of males and females to examine if they were significantly different. Finally, a multiple linear regression was utilized to account for the effects from two potential confounders, age and body mass index (BMI). We found that sodium content appears to be higher in skin than in muscle for men, however women tend to have higher muscle sodium than skin sodium. This sex-relevant sodium deposition is statistically significant (P = 3.10 × 10 5) by the Wilcoxon rank sum test, and this difference in distribution seems to be more reliable with increasing age. In the multiple linear regression, gender still has a statistically significant effect (P < 1.0 × 10 4) on the difference between sodium deposition in muscle and skin, while taking the effects of age and BMI into account.  相似文献   

17.
Yinghui Zhou  Jing Zhou 《Surface science》2012,606(7-8):749-753
Low coverage of Ti was deposited on the well-ordered CeOx(111) (1.5 < x < 2) thin films grown on Ru(0001) by physical vapor deposition at room temperature. The structure and interaction of Ti/ceria interfaces were investigated with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) techniques under ultrahigh vacuum conditions. XPS data indicate that the deposition of Ti on both oxidized and reduced ceria surfaces causes the partial reduction of Ce from + 4 to + 3 state. Ti is formally in the + 4 state. STM data show the formation of small atomic-like titania features at 300 K, which coalesce to form chain structures upon heating. It is demonstrated in the study that the deposition of Ti can form mixed metal oxides at the interface and modify both electronic and structural properties of the ceria support. The structural study of Ti/ceria interfaces can be a key for understanding the higher catalytic activity of the Ti–CeOx mixed oxide catalysts as compared with the individual pure oxides.  相似文献   

18.
Plasma enhanced chemical vapor deposition (PECVD) is one effective method to prepare graphene at low temperature in a short time. However, the low temperature in PECVD could not provide substrate a proper state for large area and few layer graphene preparation. Herein, we propose a two-step method to grow graphene on Cu foils. In the first step, in order to acquire a smooth and oxide-free surface state, methanol was used as a reductant to pretreat Cu. In the second step, graphene films were prepared on Cu foils by PECVD using CH4 as carbon source with H2-free. Few-layer graphene sheets with diameter about 1 μm under low temperature (700 °C) and at a short time (10 min) on well pretreated Cu foils were successfully gotten. The effect of methanol pretreatment on graphene synthesis and the graphene growth mechanism on Cu substrate by PECVD are analyzed comprehensively.  相似文献   

19.
Density Functional Theory (DFT) calculations indicate that energetically stable structure of clean GaN(0001) surface posses (2 × 1) reconstruction, having every second row of Ga located near plane of N atoms, that gives rise to Ga-related dispersionless surface electronic state, already identified by angle resolved photoelectron spectroscopy (ARPES) measurements [S.S. Dhesi et al. Phys. Rev. B 56 (1997) 10271, L. Plucinski et al. Surf. Sci 507-10 (2002) 223, S. M. Widstrand et al. Surf. Sci. 584 (2005) 169]. The energy reduction in reconstruction proceeds via change of the hybridization of the occupied Ga surface states from sp3 to sp2, transforming the empty states to pz type. It is also shown that the electric subsurface field, modeled in new slab model which allows to simulate electric fields at the semiconductor surfaces [P. Kempisty et al., J. Appl. Phys. 106 (2009) 054901], strongly affects the energy of electronic states of GaN(0001) surfaces. The change of the field may shift the energy of surface states of bare and hydrogen covered GaN(0001) surface, by several eV with respect to the band states. The phenomenon, denoted as Surface States Stark Effect (SSSE), explains various band bending values, measured at differently doped n-type GaN(0001) surfaces. It is shown also that, for the adsorbate density up to one H atom for each Ga surface atom i.e. 1 monolayer coverage (1 ML), the hydrogen adatoms are located at the on-top positions, i.e. directly above Ga atoms. For these adsorbate densities, the H-related quantum surface state is located slightly below the valence band maximum (VBM) in the case of p-type GaN surface. For n-type GaN, the H-related surface state is located deeply in the valence band, about 2 eV below VBM. For higher, 1.25 ML hydrogen coverage, the two H adatoms create either surface attached H2 ad-molecule (energetically stable) or triple bridge configuration is created (metastable). The H2 ad-molecule is weekly attached to the surface, having the desorption energy barrier equal to 0.16 eV. For 1.25 ML coverage the DFT results were obtained for p-type GaN only. They show that in the ad-molecule case, a new surface electronic state arises which is located about 6.7 eV below VBM. In the case of the bridge configuration, the bridge related surface state is located closely to the conduction band minimum (CBM).  相似文献   

20.
Highly conducting and transparent aluminum doped CdO thin films were deposited using pulsed laser deposition technique. The effect of growth temperature on structural, electrical, and optical properties was studied. It is observed that the film orientation changes from preferred (1 1 1) plane to (2 0 0) plane with increase in growth temperature. The electrical resistivity of the films was found to increase with increase in growth temperature. The low resistivity of 4.3 × 10−5 Ω cm and high transparency (∼85%) was obtained for the film grown at 150 °C. The band gap of the films varies from 2.74 eV to 2.84 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号