首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0–π0π transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov–de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L   and accordingly the π(0)π(0) state is always more stable than the 0 (ππ) state if L is odd (even).  相似文献   

2.
Based on the Green's function method, we investigate the interplay between Majorana zero mode (MZM) and Andreev bound states (ABSs) in a quantum dot molecule side coupled to a topological superconducting nanowire with a pair of MZMs forming a Josephson junction. Since the strong electron–hole asymmetry induced by the nanowire with a topologically non-trivial phase, the MZM suppress the ABSs. The suppression induced by the MZM is robust against the Coulomb repulsion. The interplay between the MZM and the ABSs in Josephson junction presents a feasible experimental means for distinguish between the presence of MZM and ABSs.  相似文献   

3.
王素新  李玉现  王宁  刘建军 《物理学报》2016,65(13):137302-137302
研究了连接在正常金属电极和超导电极之间的耦合Majorana束缚态(MBSs)T形双量子点结构中的Andreev反射.研究发现,对于T形双量子点结构,当入射能量等于边耦合量子点能级时Andreev反射电导出现Fano振荡,连接MBSs之后,零费米能附近出现一对新的Fano型振荡峰.如果忽略两个MBSs之间的相互作用,零费米能点的Andreev反射电导为定值1/2G_0(G_0=2e~2/h),不受量子点能级、双量子点之间耦合强度以及量子点与MBSs之间的耦合强度的影响.此外,在没有耦合MBSs的T形双量子点结构中,调节双量子点间的耦合强度可以使零费米能附近的Andreev反射电导出现由共振带向反共振带的转变,而耦合MBSs之后,又可以使反共振消失转而出现新的共振峰.  相似文献   

4.
王素新  李玉现  刘建军 《中国物理 B》2016,25(3):37304-037304
Andreev reflection(AR) in a normal-metal/quantum-dot/superconductor(N–QD–S) system with coupled Majorana bound states(MBSs) is investigated theoretically. We find that in the N–QD–S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD–MBS coupling or MBS–MBS coupling. The AR conductance is always e~2/2h at the zero Fermi energy point when only QD–MBSs coupling is considered. In addition, the resonant AR occurs when the MBS–MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD–MBS coupling and the MBS–MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.  相似文献   

5.
徐茂杰  窦晓鸣 《中国物理 B》2010,19(6):67301-067301
This paper theoretically studies Josephson spin current through triplet superconductor/ferromagnet/triplet superconductor junctions. At the ferromagnet/superconductor interfaces, the ferromagnetic scattering potential gives rise to coupling between the Andreev bound states and lifts their spin degeneracy. These spin-split Andreev states carry the Josephson spin current through the junctions. The generated spin supercurrent can be controlled by the magnetization of a ferromagnetic thin layer and bias voltage across the junctions.  相似文献   

6.
7.
《Current Applied Physics》2018,18(9):1087-1094
We investigate the Andreev tunneling and Josephson current in graphene irradiated with high-frequency linearly polarized light. The corresponding stroboscopic dynamics can be solved using Floquet mechanism which results in an effective stationary theory to the problem exhibiting an anisotropic Dirac spectrum and modified pseudospin-momentum locking. When applied to an irradiated normal graphene - superconductor (NS) interface, such analysis reveal Andreev reflection (AR) to become an oscillatory function of the optical strength. Specifically we find that, by varying the polarization direction we can both suppress AR considerably or cause the Andreev transport to remain maximum at sub-gap excitation energies even in the presence of Fermi level mismatch. Furthermore, we study the optical effect on the Andreev bound states (ABS) within a short normal-graphene sheet, sandwiched between two s-wave superconductors. It shows redistribution of the low energy regime in the ABS spectrum, which in turn, has major effect in shaping the Josephson super-current. Subjected to efficient tuning, such current can be sufficiently altered even at the charge neutrality point. Our observations provide useful feedback in regulating the quantum transport in Dirac-like systems, achieved via controlled off-resonant optical irradiation on them.  相似文献   

8.
The tunneling spectrum of an electron and a hole in a superlattice of NS junctions is computed using the BTK approach and the transfer matrix method. It shows sharp resonances at some energies above the superconducting gap. The sharper the resonance is the more layers the superlattice has. We find for the first time a mechanism to balance the incident and outgoing currents on the superlattice by averaging over the phase between the incident electron and the incident hole. This mechanism is more natural and physical than those in literatures.  相似文献   

9.
《Physics letters. A》2020,384(27):126694
We consider the edge of a superconducting topological insulator with the impurity in the presence of the Zeeman field. We analytically prove that in the trivial phase two Andreev bound states (ABSs) arise with energies moving from the superconducting gap edges to zero forming two Majorana-like bound states, as the impurity strength varies from 0 to ±2. When the Zeeman field is locally perturbed, ABSs arise both in the trivial and topological phases, but in the topological phase ABSs with energy near the gap edges cannot transform into Majorana bound states and vice versa.  相似文献   

10.
We investigate the direction-dependent Andreev reflection of normal state-superconductor junctions both in monolayer and bilayer graphene with a single magnetic barrier by means of the Green?s function formalism. Such a barrier is capable of tuning the preferred angles of incidence for the Andreev retro-reflection. It enhances the specular reflection probability for certain angles of incidence in bilayer-based hybrid structures. We further study the impacts of magnetic barriers on the monolayer and bilayer hybrid structures by calculating the differential conductances within the Blonder–Tinkham–Klapwijk formula for experimental comparisons.  相似文献   

11.
This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage VG, respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength χ ∼ md  /??vF. With the barrier strength Z ∼ VGd  /??vF, the number of peaks N is determined through the relation Z ∼  + σπ (with 0 < σ?1σ?1 for χ < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene.  相似文献   

12.
We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bilayer are decoupled. We calculate quantitatively the density of states (DOS) in the FS bilayer for arbitrary length of the ferromagnetic layer, using a self-consistent numerical method. We compare these results with a known analytical DOS approximation, which is valid when the ferromagnetic layer is long enough. Finally we calculate quantitatively the current–voltage characteristics of a SIFS junction.  相似文献   

13.
约瑟夫森结是一种利用超导材料制备的新型量子电子器件,它的一个显著特性是具有高度的非线性,因而会出现明显的混沌行为。约瑟夫森结与阵列的混沌行为具有重要的研究和应用价值,受到了广泛的关注。文中对约瑟夫森结与阵列的非线性混沌行为及研究进展做一些介绍。  相似文献   

14.
Andreev bound states in monoatomic superconductor–ferromagnet (S/F) superlattices are studied theoretically, assuming tunneling between S and F layers in perpendicular direction. Andreev reflection at S/F interfaces is strongly affected by the exchange interaction h in F layers. In the ground state, only for h≠0 zero-energy states (ZES) are formed on S and F layers. For h=0, corresponding to superconductor–normal metal (S/N) superlattices, ZES may appear in the nonequilibrium phase, =π. This is found both for s-wave and d-wave symmetry of the order parameter in S. The conditions for ZES are obtained as a function of h, of the transfer integral t for movement of quasiparticles (QPs) between S and F layers, and of the corresponding ground state phase difference eq between two neighboring S layers.  相似文献   

15.
李晓薇 《物理学报》2006,55(12):6637-6642
由Bogoliubov-de Gennes方程得到铁磁超导共存态(FS)的自洽方程,利用推广的Furusaki-Tsukada的电流公式计算了铁磁超导态/绝缘层/自旋三重态p波超导体(FS/I/p)结的直流Josephson电流随结的温度、相位差以及FS中磁交换能、结界面的势垒散射强度的变化关系.研究表明:FS中磁交换能、结界面的势垒散射均抑制FS/I/p结的直流Josephson电流.当自旋三重态超导体具有px波配对势时,自旋三重态超导体结的直流Josephson电流随结两侧相位差的振荡周期是π. 关键词: 铁磁超导态 自旋三重态超导体 p波超导体 直流Josephson电流  相似文献   

16.
李晓薇 《物理学报》2002,51(8):1821-1825
在超导体铁磁体绝缘层超导体结(SFIS)中,运用BogoliubovdeGennes(BdG)方程和FurusakiTsukada(FT)电流公式,计算铁磁超导共存态的自洽方程和SFIS结中的直流Josephson电流.研究表明,铁磁超导态的磁交换能h对准粒子的Andreev反射有抑制作用,使得SFIS结中的直流Josephson电流随铁磁超导共存态的磁交换能h增大而减弱 关键词: S/F-I-S结 铁磁超导态 直流Josephson电流  相似文献   

17.
Hong Li 《中国物理 B》2022,31(12):127301-127301
The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator (TI) ferromagnet/superconductor (FM/SC) junction. The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory. It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection. The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections. There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero. These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.  相似文献   

18.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

19.
郑翌洁  宋俊涛  李玉现 《中国物理 B》2016,25(3):37301-037301
When two three-dimensional topological insulators(TIs) are brought close to each other with their surfaces aligned,the surfaces form a line junction. Similarly, three TI surfaces, not lying in a single plane, can form an atomic-scale nanostep junction. In this paper, Andreev reflection in a TI–TI–superconductor nanostep junction is investigated theoretically. Because of the existence of edge states along each line junction, the conductance for a nanostep junction is suppressed. When the incident energy(ε) of an electron is larger than the superconductor gap(?), the Andreev conductance in a step junction is less than unity while for a plane junction it is unity. The Andreev conductance is found to depend on the height of the step junction. The Andreev conductance exhibits oscillatory behavior as a function of the junction height with the amplitude of the oscillations remaining unchanged when ε = 0, but decreasing for ε = ?, which is different from the case of the plane junction. The height of the step is therefore an important parameter for Andreev reflection in nanostep junctions, and plays a role similar to that of the delta potential barrier in normal metal–superconductor plane junctions.  相似文献   

20.
Quasiparticle (QP) planar tunneling spectroscopy is used to investigate the density of states (DoS) of YBa2Cu3O7 (YBCO). Temperature, crystallographic orientation, doping, damage and magnetic field dependencies confirm that the observed zero-bias conductance peak (ZBCP) is an Andreev bound state (ABS), an intrinsic property of a d-wave superconducting order parameter (OP) at an interface. In zero applied field, the splitting of the ZBCP below 8 K confirms a near-surface phase transition into a superconducting state with spontaneously broken time-reversal symmetry (BTRS). Tunneling into the ABS provides a phase-sensitive spectroscopy that can be used to measure a variety of DoS properties in an unconventional superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号