共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the effect of different treatments—heat treatment (HT), sonication (SC), thermosonication (TS), manosonication (MS), manothermal (MT), and manothermosonication (MTS) on Escherichia coli O157:H7, polyphenol oxidase (PPO), and anthocyanin content in blueberry juice. First, samples were treated at different temperatures (30, 40, 50, 60, 70, and 80 °C) and power intensities (280, 420, 560, and 700 W) for 10 min. Subsequently, samples were treated using combinations of power intensity and mild temperature for 10 min. For further study, samples were treated using HT (80 °C), TS (40 °C, 560 W), MT (350 MPa, 40 °C), MS (560 W, 5 min/350 MPa), or MTS (560 W, 5 min, 40 °C/350 MPa, 40 °C) for 5, 10, 15, 20 min for each treatment, and the results compared between treatments. HT significantly reduced PPO activation (2.05% residual activity after only 5 min), and resulted in a 2.00-log reduction in E. coli O157:H7 and an 85.25% retention of anthocyanin. Escherichia coli O157:H7 was slightly inactivated by TS after 5 min (0.17-log reduction), while residual PPO activity was 23.36% and anthocyanin retention was 98.48%. However, Escherichia coli O157:H7 was rapidly inactivated by MTS (5.85-log reduction) after 5 min, while anthocyanin retention was 97.49% and residual PPO activity dropped to 10.91%. The destruction of E. coli cells as a result of these treatments were confirmed using SEM and TEM. Therefore, a combination of sonication, high pressure, and mild heat allows the safety of blueberry juice to be maintained without compromising the retention of desirable antioxidant compounds. 相似文献
2.
Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI. 相似文献
3.
A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. 相似文献
4.
Triglyceride transesterification for biodiesel production is a model reaction which is used to compare the conversion efficiency, yield, reaction time, energy consumption, scalability and cost estimation of different reactor technology and energy source. This work describes an efficient, fast and cost-effective procedure for biodiesel preparation using a rotating generator of hydrodynamic cavitation (HC). The base-catalyzed transesterification (methanol/sodium hydroxide) has been carried out using refined and bleached palm oil and waste vegetable cooking oil. The novel HC unit is a continuous rotor-stator type reactor in which reagents are directly fed into the controlled cavitation chamber. The high-speed rotation of the reactor creates micron-sized droplets of the immiscible reacting mixture leading to outstanding mass and heat transfer and enhancing the kinetics of the transesterification reaction which completes much more quickly than traditional methods. All the biodiesel samples obtained respect the ASTM standard and present fatty acid methyl ester contents of >99% m/m in both feedstocks. The electrical energy consumption of the HC reactor is 0.030 kW h per L of produced crude biodiesel, making this innovative technology really quite competitive. The reactor can be easily scaled-up, from producing a few hundred to thousands of liters of biodiesel per hour while avoiding the risk of orifices clogging with oil impurities, which may occur in conventional HC reactors. Furthermore it requires minimal installation space due to its compact design, which enhances overall security. 相似文献
5.
Dairy processing provides acceptable safety and shelf-life to final products, and improves their bioactivity. The present study evaluated the potential of different milk processing techniques to improve the antioxidant and angiotensin-I converting enzyme (ACE)-inhibitory activity of Cheddar cheese, during ripening. Cheese was made from milk subjected to different pre-treatments (C = untreated control, US-1 = ultrasonication, specific energy = 23 J/g, 20 kHz frequency; US-2 = Ultrasonication specific energy = 41 J/g, 20 kHz; HPP = high-pressure processing, 400 MPa for 15 min, at temperature < 40 °C; MW = microwave, temperature<40 °C, specific energy = 86.5 J/g) and analysed after ripening for 0, 3, 6 and 9 months. The results showed that the rate of proteolysis during both cheese making and subsequent ripening was significantly affected by the pre-treatment. Antioxidant activity and ACE-inhibitory potential of cheeses made from pre-treated milk significantly increased (p < 0.05) in the following order: US-2 > HPP > US-1 > MW > C. These findings demonstrate the possibility of using ultrasound, microwaves or high-pressure processing as pre-treatments to improve the nutritional attributes of cheese. 相似文献
6.
7.
A study was initiated with the objective of evaluating the effects of sonication treatment on important quality parameters of extract of Pinus massoniana pollen. Sonication of extract was done (frequency 20 kHz and various amplitude levels) for 10, 30, 50 min, respectively. As results, total polysaccharide, phenolics and flavonoids significantly increased (P < 0.05). And sonicated P. massoniana pollen displays strong immuno-stimulating activity by increasing proliferations of splenic lymphocytes and subsets of CD4+ T cells (CD3+CD4+), CD8 T cells (CD3+CD8+), and increased Ig secretion. Sonicated P. massoniana pollen also showed anti-tumor function by inhibition of tumor cell proliferation, inhibition of ROS production, up-regulation of GSH/GSSG ration, up-regulating the gene expression of P53, Bax and down-regulating the gene expression of Bcl-2. Findings of the present study suggested the sonication treatment of P. massoniana pollen could improve the quality and bioactivity of P. massoniana pollen, indicating that sonication is effective in processing of pollen and could be a potential process in tumor prevention and treatment. 相似文献
8.
The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. 相似文献
9.
We calculate the complete closed string high energy scattering amplitudes (HSA) in the Regge regime for arbitrary mass levels. As an application, we deduce the complete ratios among closed string HSA in the fixed angle regime by using Stirling number identities. These results are in contrast with the incomplete set of closed string HSA in the fixed angle regime calculated previously. The complete forms of the fixed angle amplitudes, and hence the ratios, were not calculable previously without the input of zero-norm state calculation. This is mainly due to the lack of saddle point in the fixed angle closed string calculation. 相似文献
10.
Sonoelectrochemical decomposition of organic compounds is a developing technique among advanced oxidation processes (AOPs). It has the advantage over sonication alone that it increases the efficiency of the process in terms of a more rapid decrease in chemical oxygen demand (COD) and in total organic carbon (TOC) and accelerates electrochemical oxidation which normally requires a lengthy period of time to achieve significant mineralisation. Moreover the use of an electrocatalytic electrode in the process further accelerates the oxidation reaction rates. The aim of this study was to improve the decomposition efficiency of methylene blue (MB) dye by sonoelectrochemical decomposition using environmentally friendly and cost-effective Ti/Ta2O5–SnO2 electrodes. Decolourisation was used to assess the initial stages of decomposition and COD together with TOC was used as a measure of total degradation. The effect of a range of sonication frequencies 20, 40, 380, 850, 1000 and 1176 kHz at different powers on the decolourisation efficiency of MB is reported. Frequencies of 850 and 380 kHz and the use of higher powers were found more effective towards dye decolourisation. The time for complete MB degradation was reduced from 180 min using electrolysis and from 90 min while carrying out sonolysis to 45 min when conducting a combined sonoelectrocatalytic experiments. The COD reduction of 85.4% was achieved after 2 h of combined sonication and electrolysis which is a slightly higher than after a single electrolysis (78.9%) and twice that of sonolysis (40.4%). A dramatic improvement of mineralisation values were observed within 2 h of sonoelectrocatalytic MB degradation. The TOC removal efficiency increased by a factor of 10.7 comparing to sonication alone and by a factor of 1.5 comparing to the electrolytic process. The energy consumption (kWh/m3) required for the complete degradation of MB was evaluated. 相似文献
11.
Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process. 相似文献
12.
A highly viscous nature of heavy oil poses challenges to transportation leading to costly operation and difficult processing. Traditional methods of upgrading unconventional hydrocarbon sources involve catalytic and thermal upgrading and these methods require high temperature and pressure. In the present study, partial upgrading of heavy hydrocarbon is studied by using cavitation and the stimulator. Cavitation is a phenomenon comprising of formation, growth and collapse of bubbles in a liquid medium. The most well-known disruptive effect of cavitation occurs during the collapse phase of bubbles. Method of inducing cavitation involves transmitting 20 kHz of ultrasound through an ultrasonic horn. A model molecule used in this study is n-hexadecane (C16). The experiments were carried out at 230 °C, atmospheric pressure and 60 min time scale. The results indicated that the conversion of n-hexadecane into R1 fraction (<C16) and R2 fraction (>C16) was 4.46% for the cavitation-assisted cracking with the stimulator. The selectivity to R1 and R2 fractions were 71% and 29%, respectively. Adding 5 vol% decalin as hydrogen donor into the cracking process yielded 9.18% conversion of n-hexadecane into R1 and R2 fractions. In addition, the selectivity to R1 and R2 fractions were 87% and 13%. This study focuses on less energy intensive process for heavy hydrocarbon by utilizing cavitation and the stimulator and how ultrasound-assisted cracking with the stimulator could be a viable alternative to treat heavy hydrocarbon at the low temperature. 相似文献
13.
The several types of sonication methods were applied to access the different morphologies of ZnO nanostructures on the surface of mild steel. To achieve this goal, a sonictor equipped with the probe extender was used as a high intensity ultrasonic apparatus for direct sonication. Furthermore, an ultrasonic bath (low intensity) and a cup-horn system (high intensity) were applied for indirect sonication. To find the effect of the acoustic waves on the ZnO morphology, the micrographs of obtained surfaces were compared to the sample prepared by the conventional method using scanning electron microscopy (SEM). In this work, the beneficial effects of sonication were subjected on the breaking down the agglomerates to smaller size particles, metal surface activation, and on the facile approach to nanostructures synthesis. The influence of the resulting ZnO structures over the corrosion protection of the electroless Ni–P alloy coatings was evaluated by the potentiodynamic polarization technique (Tafel extrapolation). 相似文献
14.
Multi-walled carbon nanotubes (CNTs) have been treated using 20 kHz ultrasound in combination with dilute nitric and sulfuric acids at much lower concentrations than previously reported. The measurements revealed an optimum set of sonication conditions (in this case 30 min at 12 W cm−2) exists to overcome aggregation of the nanotubes and to allow efficient dispersion in ethanol or in chitosan. Transmission electron microscopy and Raman spectroscopy suggested the removal of amorphous material and reduction of the CNT diameter as well as modifications to their defect structures. The surface oxidation was determined by FTIR spectroscopy. At longer times or higher ultrasound intensities, degradation such as nanotube shortening and additional defect generation in the graphitic network occurred and the benefits of using ultrasound decreased. The modified CNTs were used as fillers for chitosan films and gave a tenfold increase in tensile strength and integrity of the films. The methodology was combined with sonochemical generation of gold or iron oxide nanoparticles to produce a range of functional membranes for catalytic reductive hydrogenation or dye degradation under conditions that are more environmentally benign than those previously used. Our results further add to the usefulness of sonochemistry as a valuable tool in preparative materials chemistry but also illustrate the crucial importance of careful control over the experimental conditions if optimum results are to be obtained. 相似文献
15.
High-power ultrasonic horns operating at low frequency are known to generate a cone-shaped cavitation bubble cloud beneath them. The exact physical processes resulting in the conical structure are still unclear mainly due to challenges associated with their visualization. Herein, we address the onset of the cavitation cloud by exploiting high-speed X-ray phase contrast imaging. It reveals that the cone formation is not immediate but results from a three-step phenomenology: (i) inception and oscillation of single bubbles, (ii) individual cloud formation under splitting or lens effects, and (iii) cloud merging leading to the formation of a bubble layer and, eventually, to the cone structure due to the radial pressure gradient on the horn tip. 相似文献
16.
The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis. 相似文献
17.
Diacylglycerol oil has been increasingly recognized by its good nutritional properties and therefore, different technologies have been developed for obtaining it. The present work focuses on the diacylglycerol production by hydrolysis reaction of the palm oil using the PS IM and TL IM commercial lipases as biocatalysts under ultrasound irradiation. An experimental design (central composite rotatable design - CCRD) adopting surface response was applied as a tool to evaluate the optimal reaction conditions beyond a restrict number of experiments. Reactions were performed in an ultrasound equipment and different variables were investigated, such as temperature (30-55 °C), enzyme content (1-2 wt.% of oil mass), mechanical stirring (300-700 rpm) and reaction time. Both, PS IM and TL IM enzymes showed the best results after 1 h and 30 min of reaction under 30 °C and, applying 300 rpm as stirring. On these conditions, the diacylglycerol yield was around 34% and 39%, respectively; considering that 1% PS IM was applied for the first one and, 2% TL IM for the second one. Therefore, it was obtained good yield of a diacylglycerol-rich oil in shorter reaction times under sonication and soft conditions. The mathematic model proposed suggested a satisfactorily representation of the process and good correlation among the experimental results and the theoretical values predicted by the model equation were achieved. 相似文献
18.
A recently developed Cu Kα1 (hν = 8047.8 eV) X-ray source/ESCA300 electron spectrometer combination has been used to investigate the intrinsic plasmon energy losses associated with the Fe 1s core level (binding energy = 7111 eV) in metallic iron. The surface and bulk intrinsic plasmon energy losses were separated and it was found that using the theoretically calculated extrinsic energy loss cross-section to represent the bulk intrinsic energy loss cross-section gave an overall intrinsic loss probability which is approximately the same as if a Lorentzian type cross-section is used. However, this approach does not separate the surface and bulk intrinsic losses properly and is not a good approximation for peak shape analysis in the near peak region. A more realistic approximation is provided by using a Lorentzian type energy loss cross-section to represent the bulk intrinsic energy losses. It has also been shown that for the Fe 1s core level of metallic iron the probability that a photoelectron will suffer an intrinsic energy loss is higher at the surface than in the bulk. Also for this core level the excitation probability for the intrinsic plasmons is greater than that of the extrinsic plasmons. Hence ignoring the intrinsic plasmons would cause considerable error in peak shape analysis in the near peak region. 相似文献
19.
高能激光能量计校准方法研究 总被引:1,自引:3,他引:1
给出了一种绝对式高能激光能量计光电校准方法.该方法以大功率灯作为校准光源,通过测量灯两端的电压以及电流获得电能值,去掉灯所消耗的热能,得到灯所发出的光能.所设计平板能量计将大功率灯密封在高能激光能量计内,光能全部被能量计吸收.根据能量计输出值以及光能值便可实现能量计光电校准.结果表明,能量计光电校准不确定度约为1.5%. 相似文献
20.
An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport. 相似文献