首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [N(CH3)4][N(C2H5)4]CuCl4 single crystal has been synthetized in order to determinate the temperatures transition and to study the electrical properties and the conduction mechanism. At room temperature, this compound crystallizes in the tetragonal system with P-421m space group. The calorimetric study shows three anomalies at 248, 284 and 326 K. Electrical conduction and dielectrical relaxation mechanisms at various frequencies and temperatures were analyzed by impedance spectroscopy and the equivalent circuit based on the Z-View-software was proposed. The variation of fp relaxation determinate by the modulus study and σdc specific to the AC conductivity as a function of temperature and confirm the all transitions for our sample. The values of the activation energy are determined and compared by those, which are found in the similar compound. Frequencies dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law and the conduction mechanisms for each phase are determined with the Elliot's theory.  相似文献   

2.
3.
ABSTRACT

The new organic-inorganic compound [C2H5NH3]2ZnCl4 has been grown by the slow evaporation at room temperature. The zero-dimensional (0-D) structure for this compound was determined by the single X-ray diffraction. It crystallizes at room temperature in the non-centrosymmetric space group Pna21 and consists of ethylammonium cations [C2H5NH3]+ and [ZnCl4]2? tetrahedra anions. That is interconnected by means of hydrogen bonding contacts N-H···Cl. The molecular geometry and vibrational frequencies of [ZnCl4]2? and [C2H5NH3]+ in the ground state was calculated using density functional method (B3LYP) with 6–31G(d) and 6–311G (d,p) basis set. The optimized geometric bond lengths and bond angles, obtained by using B3LYP/6–311G (d,p), show the best agreement with the experimental data. The optical absorbance was measured in order to deduce the absorption coefficient α, optical band gap Eg. The optical band gap is determined by extrapolating the plotted graph of (αhυ)1/2 vs. (hυ). The large value of indirect optical band gap energy indicates the insulating nature of this material. Moreover, the extinction coefficient, refractive index and the dielectric permittivity of [C2H5NH3]2ZnCl4 compound were calculated and the results are discussed. The evolution of the dielectric loss as a function of frequency revealed a distribution of relaxation times, probably ascribed to the reorientational dynamics of alkyl chains in this compound, and then analyzed with the Cole–Cole formalism.  相似文献   

4.
Room‐temperature polarized Raman spectra of a single crystal and IR spectra of a polycrystalline sample were measured for [N(C2H5)4]2MnCl4 and the assignment of the observed bands to the respective modes has been proposed. Temperature‐dependent Raman and far‐IR studies were also performed for the polycrystalline sample in order to obtain information on changes occurring in this material as a result of phase transitions at T1 = 227 K and at T2 = 199 K. These studies revealed that the higher‐temperature ferroelastic phase transition is associated with significant modification of vibrational properties due to ordering of tetraethylammonium groups. The lower‐temperature phase transition does not lead to any clear changes in the spectra. However, our results suggest that disorder of MnCl42− ions decreases with decreasing temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
6.
[N(CH3)3H]2ZnCl4 has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry and impedance spectroscopy. The [N(CH3)3H]2ZnCl4 hybrid compound is obtained by slow evaporation at room temperature and found to crystallize in the orthorhombic system with Pnma space group. Five-phase transitions at low temperature were detected by differential scanning calorimetry measurements. The analysis of Nyquist plots has revealed the contribution of three electrically active regions corresponding to the bulk mechanism, distribution of grain boundaries and electrode processes. The dielectric relaxation is described by a non-Debye model. The study of the dielectric constants ?′, ?″ and loss tangent tan (δ) with frequency exhibits a distribution of relaxation times. The complex modulus plots have confirmed the presence of grains and grain boundaries as well as a non-Debye type of relaxation in the material. Thermodynamic parameters such as the free energy for dipole relaxation ΔF, the enthalpy ΔH and the change in entropy ΔS have been determined with the help of the Eyring theory.  相似文献   

7.
[Ba(H2O)3](ClO4)2 between 90 and 300 K possesses two solid phases. One phase transition of the first‐order type at: = 211.3 K (on heating) and = 204.6 K (on cooling) was determined by differential scanning calorimetry. The entropy change value (ΔS ≈ 15 Jmol–1 K–1), associated with the observed phase transition, indicates a moderate degree of molecular dynamical disorder. Both, vibrational and reorientational motions of H2O ligands and ClO4 anions, in the high‐temperature and low‐temperature phases, were investigated by Fourier transform far‐infrared and middle‐infrared and Raman light scattering spectroscopies. The temperature dependences of the full‐width at half‐maximum values of the bands associated with ρw(H2O) mode, in both infrared (~570 cm–1) and Raman light scattering (~535 cm–1) spectra, suggest that the observed phase transition is not associated with a sudden change of a speed of the H2O reorientational motions. Ligands reorient fast, with correlation time of the order of several picoseconds, with a mean activation energy value Ea = 5.1 kJ mol–1 in both high and low temperature phases. On the other hand, measurements of temperature dependences of full‐width at half‐maximum values of the infrared band at ~460 cm–1, associated with δd(OClO)E mode, and Raman band at ~1105 cm–1, associated with νas(ClO)F2 mode, revealed the existence of a fast ClO4 reorientation in phase I and in phase II, with the Ea(I) and Ea(II) values equal to 8.0 and 6.5 kJ mol–1, respectively. These reorientational motions of ClO4 are slightly distorted at the TC. Fourier transform far‐infrared and middle‐infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC, which suggested lowering of the crystal structure symmetry. All these experimental facts suggest that the discovered phase transition is associated with small change of H2O ligands and somewhat major change of ClO4 anions reorientational dynamics, and with insignificant change of the crystal structure, too. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A T1 minimum at 216 K for Larmor frequency 90 MHz has been detected and for this minimum no analogous T, minimum according to the known quadratic dependence of the Larmor frequency 25 MHz is found. The analysis leads to the conclusion that this T1 minimum is a result of the relaxation of protons via quadrupole nuclei. The Kimmich theoretical treatment of 1H NMR experiments exhibiting the existence of this phenomenon in the case of relaxation of protons of piridinium cations in (C5H5NH)5Bi2Br11 and the estimated averaged quadrupole frequency of interacting quadrupole nuclei has been estimated to be around 71 MHz. Below the phase transition at 118 K a wide symmetric spin-lattice relaxation minimum at 25 MHz is detected and a model of small angle libration of the pyridinium cation has been applied to explain the observed T1 relaxation time minimum.  相似文献   

10.
IR and Raman spectra of (NH4)3ZnCl5 have been recorded. The observed spectra have been analysed on the basis of the vibrations of ZnCl 4 2− and NH 4 + ions. The appearance of multiple Raman bands indicates the presence of two different types of ammonium ions. The effect of anisotropic crystalline field over the ZnCl4 and NH4 tetrahedra is also discussed. The assignment of internal modes has been verified by the potential energy distribution calculations.  相似文献   

11.
The Raman and FTIR spectra of three metal guanidinium sulfates, [C(NH2)3]2MII(H2O)4(SO4)2, (MII = Mn, Cd and VO), are recorded. The observed spectral bands are assigned in terms of the fundamental modes of vibration of the guanidinium ions, sulfate groups and water molecules. The appearance of the sulfate tetrahedra's ν1 and ν2 modes in the IR spectra and the partial lifting of the ν4 mode in the Raman spectra indicate the distortion of the SO42− tetrahedra in the structure, so that its symmetry is lowered from Td to C1. The geometry of the sulfate group in guanidinium vanadyl sulfate does not deviate much from that of the average sulfate group. The distortion of the SO4 tetrahedra is stronger in GuCds than in GuMnS. The CN3 group in the guanidinium ion is planar (D3h point group) in GuCdS and GuMnS, whereas it is lowered in the vanadyl compound. Furthermore, the spectral analyses show the presence of weak hydrogen bonds in the structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
Raman spectra of Rb2KTiOF5 crystal were obtained and analyzed in the temperature range from 77 to 297 K and under hydrostatic pressure up to 4.2 GPa (at T = 295 K). The experimental results were compared with quantum‐chemical simulation of TiOF5 pseudo‐octahedron. To interpret effects of lattice ordering, phonon spectra of several ordered phases of Rb2KTiOF5 were calculated within ab initio generalized Gordon–Kim model, and ordering of TiOF5 molecular groups were simulated within Monte Carlo approach. The spectra exhibited orientation disordering in the cubic phase under ambient conditions. Cooling below the phase transition temperature (215 K) leads to partial ordering of the structure. The isotropic perovskite‐like phase was found to undergo first‐order transition into a low‐symmetry anisotropic phase at about 1 GPa. Further compression up to 4.1 GPa did not show any effects associated with phase transitions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Proton spin-lattice relaxation time and second moment of polycrystalline [4-NH2C5H4NH][SbCl4] have been determined at 160-400 K, at 90 and 25 MHz. The temperature dependence of the second moment indicates that the cation is in the "frozen" state over that temperature range, while at higher temperatures it oscillates at an angle of 135 degrees to the pseudo-six-fold axis of the aromatic ring. Weak influence of different phase transitions on the temperature dependences of relaxation times T1 and T1D can be explained in terms of molecular dynamics.  相似文献   

18.
19.
From variable temperature vibrational Raman spectra, the axial/equatorial enthalpy differences for the substituted silacyclohexanes C5H10SiHMe, C5H10SiH(CF3) and C5H10SiCl(SiCl3) were determined. The pure liquids and solutions in various solvents were investigated. Preferred conformations are equatorial for methylsilacyclohexane and axial for trifluoromethylsilacyclohexane, consistent with earlier results from nuclear magnetic resonance experiments and ab initio calculations. For C5H10SiCl(SiCl3) an enthalpy difference close to zero was found, which is supported by high‐level which is supported by high‐level quantum chemical calculations at the second‐order Møller‐Plesset (MP2) and coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) levels, which employed various basis sets. A novel synthesis for C5H10SiCl(SiCl3) was developed using ClMg(CH2)5MgCl instead of BrMg(CH2)5MgBr as a starting material. The procedure avoids the formation of partially brominated products, facilitating the purification of the compound. 1H, 13C and 29Si nuclear magnetic resonance data are reported. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This study by Raman spectrometry of double orthophosphates of lutetium and potassium consists of a systematic analysis of double orthophosphates of the potassium and lanthanide family. In the 10-300 K temperature range three solid-solid phase transitions in this compound are obtained which demonstrate the application of Raman spectrometry to the study of the nature and mechanism of such transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号