首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the pseudopotential formalism under the virtual crystal approximation, the dielectric and lattice vibration properties of zinc-blende InAs1−xySbxPy quaternary system under conditions of lattice matching and lattice mismatching to InAs substrates have been investigated. Generally, a good agreement is noticed between our results and the available experimental and theoretical data reported in the literature. The variation of all features of interest versus either the composition parameter x or the lattice mismatch percentage is found to be monotonic and almost linear. The present study provides more opportunities to get diverse high-frequency and static dielectric constants, longitudinal and transversal optical phonon modes and phonon frequency splitting by a proper choice of the composition parameters x and y (0  x  0.30, 0  y  0.69) and/or the lattice mismatch percentage.  相似文献   

2.
AlxInyGa1?x?yN quaternary alloys with different ratios of Al/In were grown by metal-organic chemical vapor deposition on GaN/Al2O3 substrates. The structural and emission properties of the as-grown samples were investigated, respectively, by high-resolution X-ray diffraction and photoluminescence (PL) measurements. The PL emission character is related to the two prominent quenching bands, which have been determined to be located at around 1.1 eV and 1.7 eV above the valence band, respectively, by the method of optical quenching of photoconductivity. PL emission is most intense when the Al/In ratio is 7.5 for the AlxInyGa1?x?yN layer. In addition, a stronger quenching phenomenon with Al/In ratio of 5.0 in AlxInyGa1?x?yN is observed in accordance with a reduction of the intensity of AlxInyGa1?x?yN-related emission peak.  相似文献   

3.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

4.
A pseudopotential formalism coupled with the virtual crystal approximation are applied to study the effect of compositional disorder upon electronic band structure of cubic GaxIn1  xAsySb1  yquarternary alloys lattice matched to GaSb. The effects of compositional variations are properly included in the calculations. Our theoretical results show that the compositional disorder plays an important role in the determination of the energy band structure of GaxIn1  xAsySb1  y/GaSb and that the bowing parameter is dominated by the group V-anion-based sublattice. Moreover, the absorption at the fundamental optical gaps is found to be direct within a whole range of the x composition.  相似文献   

5.
Single crystals of hexagonal HfFe6Ge6-type HoMn6Sn6−xGax compounds (0.14⩽x⩽1.89) have been obtained by a flux method and studied by magnetisation measurements. All the compounds order ferrimagnetically (308⩽Tc⩽386 K) with moments lying in the (0 0 1) plane and undergo a moment reorientation transition at lower temperatures (156⩽TSR⩽195 K). At 5 K, the moments are aligned along an intermediate direction (44⩽φc⩽50°). These results are discussed and compared with the neutron diffraction results related to the isotypic TmMn6Sn6−xGax and TbMn6Sn6−xGax series where a change of the easy direction is observed with increasing gallium contents.  相似文献   

6.
Using the first-principles band-structure method, we have calculated the structural and electronic properties of zincblende TlAs, TlP, GaAs and GaP compounds and their new semiconductor Tl x Ga1?x As y P1?y quaternary alloys. Structural properties of these semiconductors are obtained with the Perdew and Wang local-density approximation. The lattice constants of Tl x Ga1?x As, Tl x Ga1?x P ternary and Tl x Ga1?x As y P1?y quaternary alloys were composed by Vegard’s law. Our investigation on the effect of the doping (Thallium and Arsenic) on lattice constants and band gap shows a non-linear dependence for Tl x Ga1?x As y P1?y quaternary alloys. The band gap of Tl x Ga1?x As y P1?y , E g (x, y) concerned by the compositions x and y. To our awareness, there is no theoretical survey on Tl x Ga1?x As y P1?y quaternary alloys and needs experimental verification.  相似文献   

7.
Electronic band structures of GaNxAs1−xyBiy dilute nitrides–bismides have been determined theoretically within the framework of the band anticrossing (BAC) model and k  p method. We have developed computer codes based on our extended BAC model, denoted (16 × 16), in which the dimension of the used states basis was equal to 16. We have investigated the band gap and the spin orbit splitting as a function of Bi composition for alloys lattice matched to GaAs. We have found that the substitution of As element by N and Bi impurities leads to a significant reduction of band gap energy by roughly 198 meV/%Bi. Meanwhile, spin orbit splitting increases by 56 meV/%Bi regardless N content. There is an excellent agreement between the model predictions and experiment reported in the literature. In addition, alloys compositions and oscillator strengths of transition energies have been calculated for GaNAsBi alloys which represent active zone of temperature insensitive (1.55 μm and 1.3 μm) wavelength laser diodes intended for optical fiber communications. A crossover at about 0.6 eV has occurred between Eg and Δso of GaN.039As.893Bi.068. When the quaternary is lattice mismatched to GaAs, resonance energy increases with Bi content if N content decreases. On the other hand, effective mass behavior of carriers at Γ point has been discussed with respect to alloy composition, k-directions and lattice mismatch.  相似文献   

8.
The solid solutions BaAl1−xSi1+x (0  x  0.5) were prepared. The compound with the stoichiometric composition (x = 0) did not show superconductivity as reported by other investigators, but the solid solutions with x > 0 became superconductors with a transition temperature Tc = 2.8 K. The comparison of the lattice parameters with those of the other isotypic ternary superconductors MAlSi (M = Ca, Sr) suggested that the superconductivity could be related to the lattice parameter within the (AlSi) plane rather than the interlayer spacing. The band structures near the Fermi level of MAlSi (M = Ca, Sr, Ba) were measured using soft X-ray photoelectron spectroscopy, which were in good agreement with the calculated ones, confirming that the contribution of the d orbitals of the alkaline-earth metals were predominant in the conduction bands.  相似文献   

9.
《Physics letters. A》2014,378(32-33):2443-2448
The interface optical phonons and its ternary effects in onion-like quantum dots are studied by using dielectric continuum model and the modified random-element isodisplacement model. The dispersion relations, the electron–phonon interactions and ternary effects on the interface optical phonons are calculated in the GaN/AlxGa1  xN onion-like quantum dots. The results show that aluminium concentration has important influence on the interface optical phonons and electron–phonon interactions in GaN/AlxGa1  xN onion-like quantum dots. The frequencies of interface optical phonons and electron–phonon coupling strengths change linearly with increase of aluminium concentration in high frequency range, and do not change linearly with increasing aluminium concentration in low frequency range.  相似文献   

10.
Interband transitions of pseudomorphic GaN/AlxGa1  xN quantum wells are analysed theoretically with respect to the piezoelectric field utilizing a 6  ×  6 Rashba–Sheka–Pikus (RSP) Hamiltonian. Band structure modifications due to the built-in Stark effect explain a shift of the emission peak in GaN/Al0.15Ga0.85N of up to 400 meV. Quantum well exciton binding energies are calculated by the variational method and are discussed in terms of spatial separation of electrons and holes by the built-in electric field, as well as the interaction between valence subbands.  相似文献   

11.
We investigate the existence of a band structure in GaAs/AlxGa1  xsuperlattices with cylindrical symmetry, namely GaAs/AlxGa1  xAs cylindrical superwires. These systems consists of a large number of concentric GaAs and AlxGa1  xAs alternate cylindrical shells around a central GaAs cylindrical wire. Despite the radial configuration (that breaks the translational symmetry) and the electron confinement in the central three-dimensional well, a band structure can emerge depending on the number and thickness of the cylindrical shells.  相似文献   

12.
《Current Applied Physics》2010,10(3):838-841
The low-temperature conductivity of InxGa1−xN alloys (0.06  x  0.135) is analyzed as a function of indium composition (x). Although our InxGa1−xN alloys were on the metallic side of the metal–insulator transition, neither the Kubo-Greenwood nor Born approach were able to describe the transport properties of the InxGa1−xN alloys. In addition, all of the InxGa1−xN alloys took place below the Ioeffe–Regel regime with their low conductivities. The observed behavior is discussed in the framework of the scaling theory. With decreasing indium composition, a decrease in thermal activation energy is observed. For the metal–insulator transition, the critical indium composition is obtained as xc = 0.0543 for InxGa1−xN alloys.  相似文献   

13.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

14.
The present work reports the observation of Meyer–Neldel rule for the thermally activated crystallization of glassy Se98−xZn2Inx (0  x  10) alloys. We have observed a strong co-relation between the pre-exponential factor K0 of rate constant K(T) of crystallization and activation energy of crystallization Ec in the present case. This indicates the presence of compensation effect for the non-isothermal crystallization process in the present glassy system, which is explained in terms of phase separation of the present alloys due to flaw bonds of these amorphous solids.  相似文献   

15.
The chemical pressure control in (Sr2−xCax)FeMoO6 (0  x  2.0) with double perovskite structure has been investigated systematically. We have performed first-principles total energy and electronic structure calculations for x = 0 and x = 2.0. The increasing Ca content in (Sr2−xCax)FeMoO6 samples increases the magnetic moment close to the theoretical value due to reduction of Fe/Mo anti-site disorder. An increasing Ca content results in increasing (Fe2+ + Mo6+)/(Fe3+ + Mo5+) band overlap rather than bandwidth changes. This is explained from simple ionic size arguments and is supported by X-ray absorption near edge structure (XANES) spectra and band structure calculations.  相似文献   

16.
17.
We present a review of published work concerning the effect of In and N compositions on the operation wavelength, optical quality and lasing threshold in GaxIn1  xAs1  yNy/GaAs QW and double heterostructure lasers. We show that the emission wavelength in the range between 1.0 and 1.4 μ m can be obtained for a wide range of In and/or N concentrations. However, in most Fabry–Perot lasers and vertical cavity surface emitting lasers (VCSELs) reported in the literature, the threshold current density plotted as a function of the relative In/N composition (R =  (1   x) / y) indicate a broad minima for 40  < R <  70, suggesting an optimum relative composition. We also present the results of our studies concerning the optical quality of GaxIn1  xAs1  yNy/GaAs single quantum wells for R =  15. We show that the optical quality of GaInAsN can be improved while achieving a red shift in the PL spectra. This is unlike the results obtained by rapid thermal annealing or conventional annealing, which are widely employed as post-growth treatment techniques, where any increase in the PL intensity is almost always accompanied by an undesired blue shift.  相似文献   

18.
We have studied the structural properties of undoped and Si-doped AlxGa1?xN/GaN/AlN on Si (1 1 1) substrate prepared by plasma-assisted molecular beam epitaxy (PA-MBE) using high-resolution X-ray diffraction (HR-XRD) and atomic force microscopy (AFM). In comparison with undoped AlGaN, the roughness and dislocation density on the surface of the AlGaN layer decrease with Si doping. Full width half maximum (FWHM) of the undoped and Si-doped samples were equal to 0.69° and 0.52°, respectively. This indicates that the Si doping improves the crystalline quality of the AlxGa1?xN layer compared with the undoped one. Raman scattering measurement reveals that the optical phonon modes of A1(LO) and E2(H) of the AlGaN show a one-mode and two-modes behavior, respectively. The Fourier-transform infrared reflectance (FTIR) investigation confirms the one-mode (two-mode) behavior of the LO (TO) phonon in our samples. This is in good agreement with Raman measurement. Finally, the barrier height (ΦB) of undoped and Si-doped AlxGa1?xN samples was found to be 0.86 and 0.74 eV, respectively.  相似文献   

19.
The effects of doping Al and Mn on the cohesive and thermophysical properties of MgB2 have been investigated using a Rigid Ion Model (RIM). The interatomic potential of this model includes contributions from the long-range Coulomb attraction and the short-range overlap repulsion and the van der Waals attraction. This model has been applied to describe the temperature dependence of the specific heat of MgB2, Mg1−xAlxB2 (x = 0.1–0.9) and Mg1−xMnxB2 (x = 0.01–0.04) in the temperature range 5 K  T  1000 K. The calculated results on cohesive energy (ϕ), Bulk modulus (BT), molecular force constant (f), Restrahalen frequency (ν0), Debye temperature (ΘD) and Gruneisen parameter (γ) are also reported for these materials. Our results on Bulk modulus, Restrahalen frequency and Debye temperature are closer to the available experimental data. The comparison between our calculated and available experimental results on the specific heat at constant volume for MgB2 and Mg1−xAlxB2 (x = 0.1–0.4), particularly, at lower temperatures has shown almost an excellent agreement. The trend of variation of the specific heat with temperature is more or less similar in pure and doped MgB2.  相似文献   

20.
The (12 × 12) and (14 × 14) valence band anticrossing (V-BAC) models were applied to calculate the electronic band structure of GaAs1xBix dilute alloys along Δ-, Λ- and Σ-directions at room temperature. A comparative study based on these models was performed in terms of energy levels, optical transitions, spin–orbit splitting and effective mass. We found a significant reduction of the band-gap energy Eg by roughly 81 meV/%Bi accompanied by an increase in the spin–orbit splitting Δso+ by about 56 meV/%Bi. Furthermore, Δso+ does come into resonance with Eg at ∼12%Bi for resonance energy equal to 0.73 eV. An excellent agreement has occurred between the (14 × 14) V-BAC model predictions and experimental results reported in the literature. In addition, we have investigated the Bi composition and k-directions dependence of the effective mass at Γ point. A slight increase of the holes effective mass with x can affect the holes transport properties of GaAsBi. The intrinsic carrier density increases with both x and the temperature T, but it remains below 1010 cm−3 for x  5% and T  300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号