首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the preparation of poly(vinyl chloride) (PVC) nanocomposites (NCs) reinforced with modified zirconia (ZrO2) nanoparticles (NPs). The ZrO2 NPs were defined as efficient filler for PVC NCs. For achieving the best dispersion and improvement of properties, the surface of ZrO2 NPs was modified by Bovine Serum Albumin (BSA). Carboxylic acids and amines are important functional groups of BSA which handle the grafting BSA on the surface of ZrO2 NPs. The PVC/ZrO2-BSA NCs were fabricated by incorporation of various amounts of the ZrO2-BSA NPs (3, 6 and 9 wt%) into PVC matrix. All the above processes were accomplished by ultrasonication as a green and environmentally-friendly method. Also, the magnetic and mechanical stirrer was used for the preparation of samples but the results are not suitable and the aggregation was observed which indicated the use of ultrasonic irradiation is the best method for the preparation of NC. The products were characterized by Fourier transform infrared spectroscopy, Transmission electron microscopy, Field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Ultraviolet–visible spectroscopy, photoluminescence spectroscopy, energy dispersive X-ray spectroscopy, wettability, and mechanical tests. The achieved PVC/ZrO2-BSA NCs showed high thermal stability, good mechanical, optical and wettability properties compared to the pure PVC. In addition, among the obtained NCs, the PVC/ZrO2-BSA NC 6 wt% showed the best improvement.  相似文献   

2.
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9 wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased.  相似文献   

3.
The present paper describes the result of investigations into preparation of novel nanocomposites (NCs) based on poly(N-vinyl-2-pyrrolidone) (PVP) as a biocompatible polymer and modified copper (II) oxide nanoparticles (NPs) as a nano-filler. To achieve optimum NCs properties, different ratios of modified copper (II) oxide NPs (3, 5, and 7 wt%) were used to fabricate PVP NCs and also the ultrasonic irradiation was utilized to perform these processes as a fast and effective method. Subsequently, the structure of the obtained nanohybrids was characterized by various techniques. The suitable incorporation between PVP matrix and modified CuO NPs can be seen from the FT-IR spectra. The obtained NCs indicated an efficient thermal improvement in comparison to the pristine polymer. Also, the uniform dispersion of modified CuO NPs in the PVP matrix was detected by FE-SEM and EDX. According to UV absorption spectra, it is clear that these NCs can be used in UV protecting applications.  相似文献   

4.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(5):1624-1628
In this study, we applied sonodynamic therapy to cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with avidin protein, which preferentially discriminated cancerous cells from healthy cells. Subsequently, hydroxyl radicals were generated from the TiO2 NPs after activation by external ultrasound irradiation (TiO2/US treatment). Although 30% of the normal breast cells (human mammary epithelial cells) exhibited the uptake of avidin-modified TiO2 NPs, over 80% of the breast cancer cells (MCF-7) exhibited the uptake of avidin-TiO2 NPs. Next the effect of the TiO2/US treatment on MCF-7 cell growth was examined for up to 96 h after 1-MHz ultrasound was applied (0.1 W/cm2, 30 s) to cells that incorporated the TiO2 NPs. No apparent cell injury was observed until 24 h after the treatment, but the viable cell concentration declined to 68% compared with the control at 96 h.  相似文献   

6.
Metal–oxide–semiconductor structures (MOS) with the embedded Co nanoparticles (NPs) were efficiently fabricated by utilizing an external laser irradiation technique for the application of nonvolatile memory. Images of high resolution transmission electron microscopy measurements exhibited that the Co NPs of 5 nm in diameter were clearly embedded in SiO2 gate oxide. Capacitance–voltage measurements certainly exhibited flat-band voltage shift of 2.2 V from 2 V to −8 V in sweeping range. The retention characteristics of MOS capacitors with the embedded Co NPs were also studied as a function of tunnel oxide thickness to confirm the suitability of nonvolatile memory devices with metal NPs. The experimental results reveal that our unique laser process will give possible promise for experimental efficient formation or insertion of metal NPs inside the gate oxide.  相似文献   

7.
The present study demonstrated the enhanced hydroxyl (OH) radical generation by combined use of dual-frequency (0.5 MHz and 1 MHz) ultrasound (US) and titanium dioxide (TiO2) nanoparticles (NPs) as sonocatalyst. The OH radical generation became the maximum, when 0.5 MHz US was irradiated at an intensity of 0.8 W/cm2 and 1 MHz US was irradiated at intensities at 0.4 W/cm2 in the presence of TiO2 NPs under the examined conditions. After incorporation of TiO2 NPs modified with targeting protein pre-S1/S2, HepG2 cancer cells were subjected to the dual-frequency US at optimum irradiation intensities (“targeted-TiO2/dual-US treatment”). Growth of the HepG2 cells was reduced by 46% compared with the control condition after irradiation of dual-frequency US for 60 s with TiO2 NPs incorporation. In contrast, HepG2 cell growth was almost the same as that in the control condition when cells were irradiated with either 0.5 MHz or 1 MHz ultrasound alone without TiO2 NP incorporation.  相似文献   

8.
《Solid State Ionics》2006,177(7-8):779-785
Performance of the proton exchange membrane fuel cell (PEMFC) with composite Nafion–inorganic additives such as silicon oxide (SiO2), titanium dioxide (TiO2), tungsten oxide (WO3), and SiO2/phosphotungstic acid (PWA) has been studied for the operation of temperature of above 100 °C. These composite membranes are prepared by the way of blending of the inorganic oxides with Nafion solution by the recasting procedure. The physico-chemical properties studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques have proved the uniform and homogeneous distribution of these oxides and the consequent enhancement of crystalline character of these membranes. The thermogravimetry analysis (TGA) results have indicated that the additives TiO2 and WO3 have accelerated decomposition of the membrane at an earlier temperature than that of the Nafion membrane. The modified membranes have shown higher uptake of water relative to that of the unmodified membranes. The proton conductivity of the modified membranes, except that of the Nafion/TiO2, is found to be close to that of the native Nafion membrane at high temperature and at 100% relative humidity (RH), however, it was much higher at low RH. The performance of these modified membranes in the PEMFC operated at 110 °C and 70% RH is better than that of Nafion membrane and is found in the order of Nafion/SiO2/PWA > Nafion/SiO2 > Nafion/WO3 > Nafion/TiO2.  相似文献   

9.
Green light emitting Mn2+ doped Zn2SiO4 particles embedded in SiO2 host matrix were synthesized by a sol–gel method. After the incorporation of ZnO:Mn nanoparticles in a silica monolith using sol–gel method with supercritical drying of ethyl alcohol in two steps, it was heat treated in air at 1200 °C for 2 h in order to obtain the SiO2/α-Zn2SiO4:Mn nanocomposites. The microstructure of phosphor crystals was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). XRD results indicate that the pure phase α-Zn2SiO4 with rhombohedral structure was obtained after thermal treatment at 1200 °C. The SiO2-Zn2SiO4:Mn nanocomposites with a Mn doping concentration of 1.5 at% exhibit two broadband emissions in the visible range: a strong green emission at around 525 nm and a second one in the range between 560 and 608 nm. This nanocomposite with a Mn doping concentration of 0.05 shows the highest relative emission intensity. Upon 255 nm excitation, the luminescence decay time of the green emission of Zn2SiO4:Mn around 525 nm is 11 ms. The luminescence spectra at 525 nm (4T16A1) and lifetime of the excited state of Mn2+ ions-doped Zn2SiO4 nanocrystals are investigated.  相似文献   

10.
The purpose of this study is to clarify the degree of impregnation resulting from treatment of internal waterlogged wood samples using MRI. On a 1.5 T MR scanner, T1 and T2 measurements were performed using inversion recovery and spin-echo sequences, respectively. The samples were cut waterlogged pieces of wood treated with various impregnation techniques which were divided into different concentrations of trehalose (C12H22O11) and polyethylene glycol (PEG; HO-(C2H4O)n-H) solutions. Then these samples underwent impregnation treatment every two weeks. From the results, we found that the slope of the T1-concentration curve using linear fitting showed the value of the internal area for PEG to be higher than the external area; internal, − 2.73 ms/wt% (R2 = 0.880); external, − 1.50 ms/wt% (R2 = 0.887). Furthermore, the slope of the T1-concentration curve using linear fitting showed the values for trehalose to have almost no difference when comparing the internal and the external areas; internal, − 2.79 ms/wt% (R2 = 0.759); external, − 3.02 ms/wt% (R2 = 0.795). However, the slope of the T2-concentration curve using linear fitting for PEG showed that there was only a slight change between the internal and the external areas; internal, 0.26 ms/wt% (R2 = 0.642); external, 0.18 ms/wt% (R2 = 0.920). The slope of the T2-concentration curve did not show a change in linear relationship between the internal and the external areas; internal, 0.06 ms/wt% (R2 = 0.175); external, − 0.14 ms/wt% (R2 = 0.043). In conclusion, using visualization of relaxation time T1, it is possible to obtain more detail information noninvasively concerning the state of impregnation treatment of internal waterlogged wood.  相似文献   

11.
The influence of the vanadium load and calcination temperature on the structural characteristics of the V2O5/TiO2 system was studied by X-ray diffraction and X-ray absorption spectroscopy (XAS) techniques. Samples of the V2O5/TiO2 system were prepared by the sol–gel method under acid conditions and calcined at different temperatures. The rutile phase was found to predominate in pure TiO2 calcined at 450 °C as a result of the reduction of phase transition temperature promoted by the sol–gel method under acid conditions. The anatase phase became predominant at 450 °C as the amount of vanadium increased from 6 to 9 wt%. A structural change in the TiO2 phase from predominantly anatase to totally rutile with increased calcination temperature was observed in 6 wt% samples. An analysis of the vanadium X-ray Absorption Near Edge Structure (XANES) spectra showed that the oxidation state of vanadium atoms in the samples containing 6 and 9 wt% of vanadium and calcined at 450 °C was predominantly V4+. However, the presence of V5+ atoms cannot be ruled out. A qualitative analysis of extended X-ray absorption fine structure (EXAFS) spectra of the samples containing 6 and 9 wt% of vanadium calcined at 450 °C showed that the local structure around vanadium atoms is comparable to that of VO2 crystalline phase, in which vanadium atoms are fourfold coordinated in a distorted structure. For the sample after calcination at 600 °C, the EXAFS and XANES results showed that a significant portion of vanadium atoms were incorporated in the rutile lattice with a VxTi(1−x)O2 solid solution formation. The conditions of sample preparation used here to prepare V2O5/TiO2 samples associated with different amounts of vanadium and calcination temperatures proved to be useful to modifying the structure of the V2O5/TiO2 system.  相似文献   

12.
We demonstrate a facile one-step method to synthesize Ni@Pt core–shell nanoparticles (NPs) with a control over the shape and the Pt-shell thickness of the NPs. By adjusting the relative reactivity of the Pt and Ni reagents in ultrasound-assisted polyol reactions, two Ni@Pt NP samples of the same composition (Ni/Pt = 1) and size (3–4 nm) but with different particle shape (octahedral vs. truncated octahedral) and different Pt-shell thicknesses (1–2 vs. 2–3 monolayer) are obtained. The control is achieved by using different Ni reagents, Ni(acac)2 (acac = acetylacetonate) and Ni(hfac)2 (hfac = hexafluoroacetylacetonate). A reaction mechanism that can explain all of the observations is proposed. The Ni@Pt NPs show up to threefold higher mass activity than pure Pt NPs in oxygen reduction reaction. Between the two Ni@Pt NP samples, the one composed of octahedral NPs with the thicker Pt-shell has higher activity than the other.  相似文献   

13.
One of the technologically most important requirements for the application of oxide-supported metal nanoparticles (NPs) in the fields of molecular electronics, plasmonics, and catalysis is the achievement of thermally stable systems. For this purpose, a thorough understanding of the different pathways underlying thermally-driven coarsening phenomena, and the effect of the nanoparticle synthesis method, support morphology, and degree of support reduction on NP sintering is needed. In this study, the sintering of supported metal NPs has been monitored via scanning tunneling microscopy combined with simulations following the Ostwald ripening and diffusion-coalescence models. Modifications were introduced to the diffusion-coalescence model to incorporate the correct temperature dependence and energetics. Such methods were applied to describe coarsening phenomena of physical-vapor deposited (PVD) and micellar Pt NPs supported on TiO2(110). The TiO2(110) substrates were exposed to different pre-treatments, leading to reduced, oxidized and polymer-modified TiO2 surfaces. Such pre-treatments were found to affect the coarsening behavior of the NPs.No coarsening was observed for the micellar Pt NPs, maintaining their as-prepared size of ~ 3 nm after annealing in UHV at 1060 °C. Regardless of the initial substrate pre-treatment, the average size of the PVD-grown NPs was found to increase after identical thermal cycles, namely, from 0.5 ± 0.2 nm to 1.0 ± 0.3 nm for pristine TiO2, and from 0.8 ± 0.3 nm to 1.3 ± 0.6 nm for polymer-coated TiO2 after identical thermal treatments. Although no direct real-time in situ microscopic evidence is available to determine the dominant coarsening mechanism of the PVD NPs unequivocally, our simulations following the diffusion-coalescence coarsening route were in significantly better agreement with the experimental data as compared to those based on the Ostwald-ripening model. The enhanced thermal stability of the micellar NPs as compared to the PVD clusters might be related to their initial larger NP size, narrower size distribution, and larger interparticle distances.  相似文献   

14.
Medium energy ion scattering (MEIS) measurements and transmission electron microscopy (TEM) observations are applied to characterize a buried Pb nanoparticle (NP) system synthesized by ion implantation. The NPs are located at the SiO2/Si film interface, forming a dense two-dimensional array. Full 2D (energy and angle) experimental MEIS spectra are compared with Monte Carlo simulated ones. The results demonstrate that MEIS measurements provide microstructural information (mean NP volume of about 150 nm3 and areal density of about 4 × 1011 NP/cm2), but no accurate information on the NP geometrical shape.  相似文献   

15.
《Applied Surface Science》2005,239(3-4):464-469
X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and work-function measurements have been used to investigate the Y/SiO2/Si(1 0 0) interfaces in situ as a function of annealing temperature. The results show that yttrium is very reactive with SiO2 and can react with SiO2 to form Y silicate and Y2O3 even at room temperature. Annealing leads to the continual growth of the Y silicate. Two distinctive reaction mechanisms are suggested for the annealing processes below and above 600 K. The reaction between metallic yttrium and SiO2 dominates the annealing processes below 600 K, while at annealing temperatures above 600 K, a reaction between the new-formed Y2O3 and SiO2 becomes dominant. No Y silicide is formed during Y deposition and subsequent annealing processes. UPS valence-band spectra indicate the silicate layer is formed at the top surface. After 1050 K annealing, a Y-silicate/SiO2/Si structure free of Y2O3 is finally formed.  相似文献   

16.
Silicon (Si) nanocrystals (NCs) less than 5 nm in diameter are grown on SiO2 surfaces using hot wire chemical vapor deposition in an ultrahigh vacuum chamber and the dangling bonds are passivated using atomic deuterium. The passivated NCs are subsequently exposed to BDx radicals formed by dissociating deuterated diborane (B2D6) over a hot tungsten filament and photoluminescence quenching is observed. Temperature programmed desorption spectra reveal the presence of additional D2 desorption peaks beyond those found for surfaces that have only been passivated by atomic deuterium. The additional peaks appear at lower temperatures and this can be attributed to deuterium desorption from surface Si atoms bonded to subsurface boron atoms. The subsurface boron likely enhances nonradiative Auger recombination leading to photoluminescence quenching.  相似文献   

17.
Well-defined and clean all-SiC nano-ripples with a period of about 150 nm are produced via the combination of 800-nm femtosecond laser irradiation and chemical selective etching with mixture solution of 65 wt% HNO3 acid (20 mL) and 40 wt% HF acid (20 mL). The incorporation mechanism of oxygen (O) species into the laser induced obscured nano-ripples is attributed to femtosecond laser induced trapping effect of dangling bonds, while that of chemical etching induced well-defined and clean nano-ripples is assigned to chemical reactions between mixture acid solution and amorphous silicon carbide (SiC) or silicon oxide (SiO2). Results from EDX analysis show that the incorporated foreign O species (atomic percentages of 9.39%) was eliminated effectively via chemical etching, while the atomic percentages of silicon (Si) and carbon (C) were about 47.82% and 52.18% respectively, which were similar to those of original SiC material. And the influences of laser irradiation parameters on the nano-ripples are also discussed.  相似文献   

18.
A Nd:Bi12SiO20 crystal was grown by the Czochralski method. The thermal properties of the crystal were systematically studied. The thermal expansion coefficient was measured to be α=11.42×10?6 K?1 over the temperature range of 295–775 K, and the specific heat and thermal diffusion coefficient were measured to be 0.243 Jg?1 k?1 and 0.584 mm2/s, respectively at 302 K. The density was measured to be 9.361 g/cm3 by the buoyancy method. The thermal conductivity of Nd:Bi12SiO20 was calculated to be 1.328 Wm?1 K?1 at room temperature (302 K). The refractive index of Nd:Bi12SiO20 was measured at room temperature at eight different wavelengths. The absorption and emission spectra were also measured at room temperature. Continuous-wave (CW) laser output of a Nd:Bi12SiO20 crystal pumped by a laser diode (LD) at 1071.5 nm was achieved with an output power of 65 mW. To our knowledge, this is the first time LD pumped laser output in this crystal has been obtained. These results show that Nd:Bi12SiO20 can serve as a laser crystal.  相似文献   

19.
Ge ions of 100 keV were implanted into a 120 nm-thick SiO2 layer on n-Si at room temperature while those of 80 keV were into the same SiO2 layer on p-Si. Samples were, subsequently, annealed at 500°C for 2 h to effectively induce radiative defects in the SiO2. Maximum intensities of sharp violet photoluminescence (PL) from the SiO2/n-Si and the SiO2/p-Si samples were observed when the samples have been implanted with doses of 1×1016 and 5×1015 cm−2, respectively. According to current–voltage (IV) characteristics, the defect-related samples exhibit large leakage currents with electroluminescence (EL) at only reverse bias region regardless of the type of substrate. Nanocrystal-related samples obtained by an annealing at 1100°C for 4 h show the leakage at both the reverse and the forward region.  相似文献   

20.
The properties of porous SiO2 xerogel film strongly depend on the aging process. The morphology of the surface modified SiO2 xerogel film pre-aged for 1 hr at 70°C showed a two-dimensional structure. Aging for 12 h at 70°C and successive modification of the film induced some particle growth and a three-dimensional network structure. The microstructure of the modified SiO2 xerogel films reflects the preformed structure during aging. The surface modification induced the changes of surface coverage from –OC2H5 and –OH bonds to –CH3. However the content of surface chemical species was almost same regardless of aging time. The porosity of the modified sample pre-aged for 12 h at 70°C was 89%. The calculated/measured dielectric constants were 1.31/1.42, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号