首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A core-shell structured magnetic layered organic-inorganic material involving 5-aminosalicylic acid (5-ASA) intercalated Zn-Al layered double hydroxides (LDHs) and magnesium ferrite (MgFe2O4) is assembled by a coprecipitation method. The powder X-ray diffraction results show the coexistence of the clear but weak diffractions of MgFe2O4 and ordered relatively stronger reflections of 5-ASA intercalated LDHs. The TEM image of magnetic 5-ASA intercalated LDHs reveals that the LDHs layer covers the MgFe2O4 particles or their aggregates with particle size of 50-80 nm. The vibration sample magnetization (VSM) measurements exhibit the increase in saturation magnetization of magnetic 5-ASA intercalated LDHs samples with increasing amount of magnetic core. The XPS analyses account for a majority of Zn, Al and O atoms on the surface of magnetic particles. It is suggested that the magnetic core MgFe2O4 was coated with LDHs layer probably through Zn-O-Mg and Al-O-Mg linkages, and a core-shell structured model is tentatively proposed.  相似文献   

2.
《中国化学会会志》2017,64(10):1139-1146
MgFe2O4 implanted with ZnO and silver nanoparticles has been successfully synthesized. The formation mechanism of the core~shell structured Ag/ZnO /MgFe2O4 nanoparticles was investigated. The efficacy of degradation of an organic dye was compared under the visible light irradiation with the individual components (MgFe2O4 , ZnO , and Ag). The structure of Ag/ZnO /MgFe2O4 nanoparticles was established from detailed structural analyses using a vibrating‐sample magnetometer (VSM), X‐ray diffraction (XRD ), selected area electron diffraction (SAED ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray spectroscopy (EDS ), and transmission electron microscopy (TEM ). Ag/ZnO /MgFe2O4 nanoparticles showed a saturation magnetization (M s) of 44 emu/g. It is seen from the results that ZnO is coated on the surface of MgFe2O4 nanoparticles, and Ag nanoparticles are attached to the edge of the ZnO /MgFe2O4 nanoparticles. In addition, the nanoparticles were found to be spherical with appropriate structures. The electron transfer mechanism greatly enhances the rhodamine B (RhB ) degradation rate, which is illustrated and discussed in detail. The obtained Ag/ZnO /MgFe2O4 nanoparticles were photostable and magnetically recyclable with potential application in the degradation of organic pollutants.  相似文献   

3.
A nano-scale magnetic solid base catalyst MgAl-OH-LDH/MgFe2O4 (where LDH denotes layered double hydroxide) composed of MgAl-OH-LDH Brønsted base catalytic layers coated on MgFe2O4 spinel cores has been prepared. A magnetic precursor MgAl-CO3-LDH/MgFe2O4 was prepared by a method involving separate nucleation and aging steps, and subsequently calcined to give a mixed metal oxide composite MgAl(O)/MgFe2O4 which was rehydrated to give MgAl-OH-LDH/MgFe2O4. The structure and magnetic properties of the nano-scale magnetic solid base MgAl-OH-LDH/MgFe2O4, together with those of the magnetic precursor MgAl-CO3-LDH/MgFe2O4 and MgFe2O4 were characterized by XRD, XPS, low temperature N2 adsorption and vibrating sample magnetometry (VSM). The MgAl-OH-LDH/MgFe2O4 composite possesses a mesoporous structure with pore size ranging from 2 to 20 nm with particle size mainly in the range 35-130 nm. The catalytic properties of MgAl-OH-LDH/MgFe2O4 were evaluated using the self-condensation of acetone at 273 K as a probe reaction. The results showed that the conversion of acetone to diacetone alcohol reached the thermodynamic equilibrium value of 23% at 273 K. The catalyst was easily recovered through application of an external magnetic field, and when the reclaimed catalyst was used in a second run for the same reaction, the reactivity remained unchanged.  相似文献   

4.
The magnesium ferrite nanorods/graphene (MgFe2O4 NR/G) composites were prepared by a facile one‐step surfactant‐assisted solvothermal method. The structure and morphology of as‐prepared composite materials were characterized by electron microscopy, energy dispersive spectrometry, Raman spectrometry, X‐ray diffraction, FT‐IR and X‐ray photoelectron spectroscopy. The homogeneous MgFe2O4 nanorods with a typical diameter of about 100 nm were well distributed on graphene. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of ?40.3 dB was observed at 14.9 GHz with a thickness of 3 mm, and the effective absorption frequency (RL  <   ? 10 dB) ranged from 12.0 to 18.0 GHz, indicating the remarkable microwave absorption performance of the MgFe2O4 NR/G composites. The absorbing property of as‐obtained composites was better than that of the pure MgFe2O4 nanorods. The synergistic effect of MgFe2O4 and graphene was responsible for the enhanced absorbing performance.  相似文献   

5.
Over bimetallic Au/Cu catalyst supported on magnetic Fe3O4 nanoparticles, water-mediated bromamine acid could be selectively converted into 4,4'-diamino-1,1'-dianthraquinonyl-3,3'-disulfonic acid (DAS) with a yield of 88.67%. The magnetic catalyst could be readily separated and reused.  相似文献   

6.
Attapulgite (ATP), a fibrous nanoclay mineral, was adopted as an additive in this study to improve the sedimentation problem of soft magnetic carbonyl iron (CI)-based magnetorheological (MR) fluids caused by the density mismatch between the CI particles and medium oil. The MR characteristics of the two MR fluid systems with and without ATP were measured and compared using a rotational rheometer under different magnetic field strengths. Scanning electron microscopy indicated that ATP filled the interspaces among the CI particles, explaining the improved dispersion stability of the MR fluid based on the Turbiscan sedimentation measurements. Despite the slight decrease in MR characteristics, the MR fluid with the additive exhibited the typical MR performance of an increase in shear stress in an applied magnetic field.  相似文献   

7.
Magnetic nanoparticles of magnetite (Fe3O4) were synthesized within a conducting polypyrrole (PPY) matrix using a facile method, and employed as both electrorheological (ER) and magnetorheological (MR) materials to provide a well dispersed suspension of either ER or MR fluids. The PPY to Fe3O4 weight ratio was adjusted to 5 % to avoid possible deterioration of the magnetic properties of the Fe3O4 particles. Transmission electron microscopy and X-ray diffraction provided information on the structure and particle size of the PPY/Fe3O4. Both ER and MR performance of pure Fe3O4 and PPY/Fe3O4 nanocomposites were examined through rotational and oscillatory tests using a rotational rheometer under an applied electric and magnetic field, respectively, demonstrating typical ER and MR characteristics.  相似文献   

8.
Using emulsion copolymer of styrene (St), glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) as seed latexes, the superparamagnetic polymer emulsion particles were prepared by seeded emulsion copolymerization of butyl methacrylate (BMA), vinyl acetate (VAc) and ethylene glycol dimethacrylate in the presence of the seed latexes and superparamagnetic Fe3O4/SiOx nanoparticles (or Fe3O4-APTS nanoparticles) through a two-step process, without addition of any emulsifier. The magnetic emulsion particles named P(St-GMA-HEMA)/P(BMA-VAc) were characterized by transmission electron microscope and vibrating sample magnetometry. The results showed that the magnetic emulsion particles held a structure with a thinner shell (around 100 nm) and a bigger cavity (around 200 nm), and possessed a certain level of magnetic response. The resulting magnetic emulsion particles were employed in the immobilization of lipase by two strategies to immobilized lipase onto the resulting magnetic composites directly (S-1) or using glutaraldehyde as a coupling agent (S-2), thus, experimental data showed that the thermal stability and reusability of immobilized lipase based on S-2 were higher than that of S-1.  相似文献   

9.
A magnetic field and temperature was shown to affect disperse composition, electrophoretic behavior, and aggregation stability of synthesized magnetite particles. When synthesis proceeds, a process of the nucleation of ultramicroscopic Fe3O4 particles prevails over a process of their aggregation. Here an electrostatic factor of stability of magnetite suspension plays an important role. An application of the magnetic field decreases the aggregation stability and increases the sedimentation rate of product particles.  相似文献   

10.
Micron‐sized monodisperse superparamagnetic polyglycidyl methacrylate (PGMA) particles with functional amino groups were prepared by a process involving: (1) preparation of parent monodisperse PGMA particles by the dispersion polymerization method, (2) chemical modification of the PGMA particles with ethylenediamine (EDA) to yield amino groups, and (3) impregnation of iron ions (Fe2+ and Fe3+) inside the particles and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer particles. The resultant magnetic PGMA particles with amino groups were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffractometry (XRD), and vibrating sample magnetometry (VSM). SEM showed that the magnetic particles had an average size of 2.6 μm and were highly monodisperse. TEM demonstrated that the magnetite nanoparticles distributed evenly within the polymer particles. The existence of amino groups in the magnetic polymer particles was confirmed by FTIR. XRD indicated that the magnetic nanoparticles within the polymer were pure Fe3O4 with a spinel structure. VSM results showed that the magnetic polymer particles were superparamagnetic, and saturation magnetization was found to be 16.3 emu/g. The Fe3O4 content of the magnetic particles was 24.3% based on total weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3433–3439, 2005  相似文献   

11.
Some supramolecular polyacrylate-based liquid crystal polymers (PLCPs) were prepared by polyacrylic acid, a liquid crystal monomer and 3,5-pyridinedicarboxylic acid. Series of magnetic liquid crystal particles (Fe3O4@PLCPs) with core-shell structure were prepared by modifying surface of magnetic nanoparticles Fe3O4 by the PLCPs. The Fe3O4@PLCPs showed a saturation magnetization strength above 51.17 emu/g, which is similar to pure magnetic Fe3O4, indicating good magnetism and magnetic field dependence. Series of magnetorheological fluids were fabricated by Fe3O4@PLCPs (using as dispersed phase) and silicone oil (using as carrier liquid). The effects of mesogen, magnetic particle, and the polymer matrix on magnetorheological performance and settling stability were investigated. The magnetorheological fluid based on 10% Fe3O4@PLCP-1 showed the best performance at an applied magnetic field of 100 mT in this study. Furthermore, the magnetorheological fluids showed excellent settling stability because the density of Fe3O4@PLCPs was lower than that of Fe3O4. The Fe3O4@PLCPs-based fluids presented certain application potential in the field of magnetic fluid due to the excellent magnetorheological effect and settling stability.  相似文献   

12.
It is reported that magnetorheological (MR) effect was enhanced when superfineα-Fe particles and other nanosize particles were added to suspensions of dense micron magnetic particles. The effect of adding superfine particles on dynamics shear stress, sedimentation stability and structure of solidified MR of magnetic suspensions were studied. The experiment showed considerable increase of shear stress and much stability of sedimentation when the suspension consisting of superfine particles. The enhanced MR effect by superfine particles dealt with the properties, weight ratio and scale of superfine particles.  相似文献   

13.
The dispersion stability of carbonyl iron (CI)-based magnetorheological (MR) fluid was improved by coating soft magnetic CI particles with an environmentally benign biopolymer of xanthan gum to reduce the density gap between the medium oil and dispersed particles. The sedimentation test of the MR fluid showed that the xanthan gum/CI composite particles improved the sedimentation drawback of the pristine CI-based MR fluid. The rheological properties of the MR fluid were also examined using a rotational rheometer to observe the typical MR characteristics, such as yield stress and shear viscosity.  相似文献   

14.
The electronic energy structure and FeK XANES in monoferrites MgFe2O4, MnFe2O4, NiFe2O4, and ZnFe2O4 were calculated with the FEFF8 program. In both normal (MnFe2O4, ZnFe2O4) and invert (MgFe2O4, NiFe2O4) spinels, hybridization of the p-states of oxygen with the 3d-states of transition metal ions leads to a similarity in the formation of the top of the valence band. In contrast to the magnetic nickel and manganese ions, the nonmagnetic zinc and magnesium ions are not actively involved in chemical bonding. It is shown that when Mn and Fe lie in the same coordination spheres of the absorbing iron atom the 3d-states are split and the curve of the densities of the p-states of transition element ions with different spin orientations changes in shape.  相似文献   

15.
Core–shell structured Fe3O4/SiO2/TiO2 nanocomposites with enhanced photocatalytic activity that are capable of fast magnetic separation have been successfully synthesized by combining two steps of a sol–gel process with calcination. The as‐obtained core–shell structure is composed of a central magnetite core with a strong response to external fields, an interlayer of SiO2, and an outer layer of TiO2 nanocrystals with a tunable average size. The convenient control over the size and crystallinity of the TiO2 nanocatalysts makes it possible to achieve higher photocatalytic efficiency than that of commercial photocatalyst Degussa P25. The photocatalytic activity increases as the thickness of the TiO2 nanocrystal shell decreases. The presence of SiO2 interlayer helps to enhance the photocatalytic efficiency of the TiO2 nanocrystal shell as well as the chemical and thermal stability of Fe3O4 core. In addition, the TiO2 nanocrystals strongly adhere to the magnetic supports through covalent bonds. We demonstrate that this photocatalyst can be easily recycled by applying an external magnetic field while maintaining their photocatalytic activity during at least eighteen cycles of use.  相似文献   

16.
In this work, spinel structure MgFe2O4 nano-crystals were synthesized by sol–gel auto-combustion method. Morphology and structure of the synthesized MgFe2O4 material is characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). And its electrochemical properties were investigated at different active material ratio. Galvanostatic charge/discharge and cyclic voltammograms (CVs) measurements show that the electrode with a ratio of 40:40:20, which is the ratio of active material: super-P carbon (SP): polyvinylidene fluoride (PVDF), presents relatively superior performance with the initial discharge capacity of 1,123 mAh g?1 and charge/discharge efficiency of 96.7 %. And after 50 cycles, it still maintains at 635 mAh g?1, which is nearly double that of the other two electrodes with active material ratio of 60:25:15 and 80:15:5. Electrochemical impedance spectra testing shows that the charge transfer resistance (Rct) decreases along with the increasing amount of SP, which is benefit for reducing the polarization and improving the cycling stability of the electrode to a certain extent.  相似文献   

17.
A new biopolymer cellulose-based magnetic heterogeneous catalyst, MgFe2O4/cellulose/SO3H nanocomposite, was prepared. Fourier-transform infrared spectra, X-ray diffraction, energy-dispersive X-ray, field-emission scanning electron microscopy, thermal analysis (TG, DTG and DSC), dynamic light scattering and vibrating sample magnetometer measurements have been used to characterize the catalyst. Then, it was applied efficiently as an inexpensive and green catalyst in two multicomponent syntheses of polysubstituted tetrahydropyridines and dihydropyrimidinones under solvent-free conditions. The nanocatalyst can be recovered and reused several times without significant loss of catalytic activity.  相似文献   

18.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

19.
A powderlike material of composition MgFe1.6Ga0.4O4 was synthesized by gel combustion using a glycine–hexamethylenetetramine mixture. The gel produced by the synthesis was studied by thermal analysis (TGA/DSC) and IR spectroscopy. This mixture was shown to be efficient for obtaining homogeneous nanosized MgFe1.6Ga0.4O4. The morphology of the powders was characterized by scanning electron microscopy and X-ray powder diffraction analysis.  相似文献   

20.
To improve the magnetic fluids’ stability and demonstrate the relationships between the bilayercoated structure and the stability, a simple method was proposed for preparingoleic acid bilayercoated Fe3O4 magnetic fluids. The hydrophilic Fe3O4 nanoparticles coated with the bilayer-oleic acid were synthesised by a one-pot process through the chemical co-precipitation under alkaline conditions. Next, the hydrophilic Fe3O4 particles were transformed to hydrophobic particles via carboxyl-protonated modification. Carboxyl-protonated modification was found to be a reversible process, i.e. the lipophilicity of the coated Fe3O4 nanoparticles could be controlled by protonating/ deprotonating the terminal carboxyl group. In addition, the space steric effect could be significantly enhanced by maximising the oleic acid adsorption and increasing the thickness of the coated layer, resulting in the oleic acid bilayer-coated Fe3O4 nanoparticles exhibiting better performance in the stability of the hexanemagnetic fluids than oleic acid monolayer-coated Fe3O4 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号