首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, SiO2 nanoparticles (NPs) were modified with bovine serum albumin (BSA) under ultrasound irradiations as a green and fast route to achieve their good dispersion. Subsequently, different weight percentages of the modified NPs (3, 6, and 9 wt%) were incorporated in poly(vinyl chloride) (PVC) as the matrix. Thermogravimetric analysis of the SiO2-BSA NPs indicated that 12 wt% of the modifier was loaded on the surface of SiO2 NPs. Encapsulation of the SiO2-BSA resulted in a meaningful improvement in the optical, mechanical and thermal characteristics of the prepared PVC nanocomposites (NCs). X-ray diffraction (XRD) patterns for the PVC/SiO2-BSA NCs showed a crystalline behavior for the NC with 6 wt% of the SiO2-BSA originated from the phosphate buffer on the NPs. Water contact angle of the PVC/SiO2-BSA NCs showed that the hydrophilicity enhanced with increasing of the NPs contents.  相似文献   

2.
This paper describes the preparation of poly(vinyl chloride) (PVC) nanocomposites (NCs) reinforced with modified zirconia (ZrO2) nanoparticles (NPs). The ZrO2 NPs were defined as efficient filler for PVC NCs. For achieving the best dispersion and improvement of properties, the surface of ZrO2 NPs was modified by Bovine Serum Albumin (BSA). Carboxylic acids and amines are important functional groups of BSA which handle the grafting BSA on the surface of ZrO2 NPs. The PVC/ZrO2-BSA NCs were fabricated by incorporation of various amounts of the ZrO2-BSA NPs (3, 6 and 9 wt%) into PVC matrix. All the above processes were accomplished by ultrasonication as a green and environmentally-friendly method. Also, the magnetic and mechanical stirrer was used for the preparation of samples but the results are not suitable and the aggregation was observed which indicated the use of ultrasonic irradiation is the best method for the preparation of NC. The products were characterized by Fourier transform infrared spectroscopy, Transmission electron microscopy, Field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Ultraviolet–visible spectroscopy, photoluminescence spectroscopy, energy dispersive X-ray spectroscopy, wettability, and mechanical tests. The achieved PVC/ZrO2-BSA NCs showed high thermal stability, good mechanical, optical and wettability properties compared to the pure PVC. In addition, among the obtained NCs, the PVC/ZrO2-BSA NC 6 wt% showed the best improvement.  相似文献   

3.
This contribution reports the biosynthesis of CuO NPs via ultrasound method using the Cystoseira trinodis extracts as an eco friendly and time saving process. The characterization of cupric oxide NPs was performed using XRD, FE-SEM, EDX, TEM, AFM, photoluminescence, UV–Vis, Raman and FT-IR spectroscopy investigations. SEM images show the spherical structure with the average crystallite size 6 nm to 7.8 nm of CuO. XRD analysis approved the formation of pure monoclinic crystallite structures of CuO NPs. These observations were confirmed by TEM analysis. The photocatalytic studies reveal the activity of the prepared CuO NPs as an efficient catalyst for the degradation of methylene blue (MB) in the presence of UV and Sunlight. CuO NPs under varying experimental parameters such as dye concentration, catalytic load, pH. The results of the in vitro biological screening effect of CuO NPs (zone of growth inhibition and minimal inhibitory concentrations) in comparison with cephalexin (as a standard compound) using the disc diffusion method was demonstrated the significant bactericidal activity against some bacteria strain including Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Salmonella typhimurium (S. typhimurium), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), and Streptococcus faecalis (S. faecalis). Furthermore, the Nps found to inhibit the activity of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals effectively. This study introduces a facile, green and low coast method for the synthesis of monoclinic CuO NPs with catalytic, antioxidant and antibacterial properties.  相似文献   

4.
The aim of the study is to investigate the optical properties of spin-coated, highly transparent nanocomposite films of oleic acid modified ZnO (Zinc oxide) nanorods embedded in Polyvinyl alcohol (PVA) matrix. Pristine and oleic acid (OA) modified ZnO nanorods have been prepared by wet chemical synthesis and are characterized by X-ray diffraction, FESEM, TEM and FT–IR spectroscopy techniques. The optical properties of ZnO/PVA films are studied using UV–visible absorption and Photoluminescence (PL) spectroscopy. The results show that the optical absorption of the films in the UV region is quite high and more than 95% absorption is observed in films prepared from OA modified ZnO nanorods. The excellent UV absorption at around 300 nm offers prospects of applications of these films as efficient UV filters in this wavelength region. The PL spectrum of pristine ZnO nanorods shows almost white light emission whereas OA modified ZnO nanorods have a more intense peak centered in the blue region. The PL emission of OA modified ZnO/PVA film shows appreciable increase in intensity compared to the film obtained with pristine ZnO. The surface modification of ZnO by the polymer matrix removes defect states within ZnO and facilitates sharp near band edge PL emission at 364 nm.  相似文献   

5.
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9 wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased.  相似文献   

6.
Silver nanoparticles (NPs) were photogenerated in situ in crosslinked poly(ester-co-styrene) resins (self-standing films and monoliths) by irradiating the samples with UV light. Addition of the silver salt solution did not interfere in the resin curing process and silver reduction was not detected during sample crosslinking. The samples were characterized by absorption spectroscopy and transmission electron microscopy. The initially broad and asymmetric surface plasmon resonance band was narrowed and blue-shifted as the exposure time to UV light was increased. Samples illuminated up to 120 min have an average particle size near 9.0 nm; a decrease to ∼5.0 nm was observed for longer exposure times up to 790 min. The asymmetric surface plasmon resonance band was due to particle aggregation; higher irradiation times led to a uniform particle distribution within the polymer matrix.  相似文献   

7.
In this study, novel nanocomposites (NCs) of aromatic polyamide (PA) and surface modified ZnO nanoparticle with s-triazine heterocyclic ring was introduced for efficient removal of toxic hexavalent chromium (VI) from aqueous solution. The surface of ZnO nanoparticle was modified by s-triazine core silane coupling agent (ZnO-TSC) and PA/ZnO-TSC NCs with different amount of ZnO-TSC nanoparticles (0, 5, 10 and 15 wt%) were prepared by ultrasonic irradiation. The synthesized PA/ZnO-TSC NCs were characterized by FT-IR, XRD, FE-SEM, TEM and TGA methods. TEM images showed that ZnO nanoparticles were dispersed homogeneously in the polymer matrix. The adsorption experiments were carried out in batch mode to optimize various parameters like contact time, pH and concentration of metal ion that influence the adsorption rate. The maximum uptakes of Cr(VI) at pH 4.0 was 72%, 81%, 89% and 91% for pure PA, NC5%, NC10% and NC15%, respectively. The kinetic of adsorption was investigated and the pseudo second-order model is an appropriate model for interpretation of adsorption mechanism of Cr(VI) ions.  相似文献   

8.
Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV–visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min−1 were associated with the high values of surface area, i.e. 70 m2/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.  相似文献   

9.
Detection of environmental pollutant and health hazardous, nitrogen dioxide (NO2) is reported using nanostructured CuO particulates (NPs). Powder X-ray diffraction and field emission scanning electron microscopy were used to probe crystalline phase and morphological details, respectively. Small crystallites of ∼10–12 nm and a strain of 4% were found in the leafy structure of CuO. Raman studies further supported the presence of nanosized CuO phase. This is the first instance of utilizing CuO NPs to detect 5 ppm of NO2 even at a low operating temperature of 50 °C. The highest sensitivity for NO2 was observed at 150 °C, for the first time, in CuO NPs. A low activation energy of 0.18 eV was found for sensing process. The CuO NPs sensor responded to NO2 within a few seconds and recovered totally under a minute. The kinetics of the NO2 gas adsorption on the CuO film surface was described following the Elovich model.  相似文献   

10.
Titanium oxide nanoparticles (NPs) were successfully prepared by sparking off two titanium tips into water for 1–5 h. The nanoparticle-dispersed water was obtained for further characterization. The transmission electron microscopy result shows that the particle size is in the range of 1–5 nm. The electron diffraction patterns and Raman spectra reveal that the as-prepared and the annealed samples at 250 °C are the anatase phase. However, the anatase–rutile phase transformation was observed from the samples at annealing temperature as low as 500 °C. The result of methylene blue-decoloration testing under sunbath suggests that the NPs have good photocatalytic property.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(3):1108-1116
The present work deals with achieving viscosity reduction in polymer solutions using ultrasound-based treatment approaches. Use of simple additives such as salts, or surfactants and introduction of air at varying flow rates as process intensifying parameters have been investigated for enhancing the degradation of polyvinyl pyrrolidone (PVP) using ultrasonic irradiation. Sonication is carried out using an ultrasonic horn at 36 kHz frequency at an optimized concentration (1%) of the polymer. The degradation behavior has been characterized in terms of the change in the viscosity of the aqueous solution of PVP. The intrinsic viscosity of the polymer has been shown to decrease to a limiting value, which is dependent on the operating conditions and use of different additives. Similar extent of viscosity reduction has been observed with 1% NaCl or 0.1% TiO2 at optimized depth of horn and 27 °C, indicating the superiority of titanium dioxide as an additive. The combination of ultrasound and ultraviolet (UV) irradiation results in a significantly faster viscosity reduction as compared to the individual operations. A kinetic analysis for the degradation of PVP has also been carried out. The work provides a detailed understanding of the role of the operating parameters and additives in deciding the extent of reduction in the intrinsic viscosity of PVP solutions.  相似文献   

12.
A novel PVA/CuI nanocomposite polymer electrolyte layer synthesized via the reduction of CuCl2 by NaI in an aqueous PVA solution. The as-prepared films were characterized by X-ray diffraction, scanning electron microscope, as well as impedance spectroscopy. The obtained results indicated the formation of hexagonal CuI nano particles of ≈55 nm sizes embedded in the PVA matrix. In addition, the study of dielectric parameters and conductivity of PVA/CuI nanocomposite in wide range of temperature and frequency are given and discussed. The frequency dependence of ac-conductivity suggests power law with an exponent 0.026 < s < 0.73 which predicts hopping of charge carriers. The bulk conductivity showed activation with temperature, significant values of activation energy are deduced and discussed. An average value of the energy gap width, 2.05 eV obtained using optical absorption in UV–visible spectra for PVA/CuI nanocomposite polymer electrolyte.  相似文献   

13.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(5):1797-1804
The present work deals with degradation of aqueous solution of Rhodamine 6G (Rh 6G) using sonocatalytic and sonophotocatalytic treatment schemes based on the use of cupric oxide (CuO) and titanium dioxide (TiO2) as the solid catalysts. Experiments have been carried out at the operating capacity of 2 L and constant initial pH of 12.5. The effect of catalyst loading on the sonochemical degradation has been investigated by varying the loading over the range of 1.5–4.5 g/L. It has been observed that the maximum degradation of 52.2% was obtained at an optimum concentration of CuO as 1.5 g/L whereas for TiO2 maximum degradation was observed as 51.2% at a loading of 4 g/L over similar treatment period. Studies with presence of radical scavengers such as methanol (CH3OH) and n-butanol (C4H9OH) indicated lower extents of degradation confirming the dominance of radical mechanism. The combined approach of ultrasound, solid catalyst and scavengers has also been investigated at optimum loadings to simulate real conditions. The optimal solid loading was used for studies involving oxidation using UV irradiations where 26.4% and 28.9% of degradation was achieved at optimal loading of CuO and TiO2, respectively. Studies using combination of UV and US irradiations have also been carried out using the optimal concentration of the catalysts. It has been observed that maximum degradation of 63.3% is achieved using combined US and UV with TiO2 (4 g/L) as the photocatalyst. Overall it can be said that the combined processes give higher extent of degradation as compared to the individual processes based on US or UV irradiations.  相似文献   

15.
A simple method was put forward in this paper for preparing colloidal copper nanoparticles in aqueous solutions using copper sulfate, gum acacia and hydrazine hydrate as copper precursor, capping agents and reducing agents, respectively, without any inert gas. The formation of nanosized copper was confirmed by its characteristic surface plasmon absorption peak at 604 nm in UV–vis spectra. The transmission electron microscopic (TEM) and scanning electron microscope (SEM) images show that the as-synthesized copper fine spherical particles are distributed uniformly with a narrow distribution from 3 nm to 9 nm. The X-ray diffraction (XRD) and high resolution transmission electron microscopic (HRTEM) demonstrated that the obtained metallic nanoparticles are single crystalline copper nanoparticles. Fourier transform infra-red (FT-IR) spectroscopic data suggested that the copper nanoparticles are coated with gum acacia. The effects of the quantity of gum acacia on the particle size were investigated by the UV–vis spectra and TEM images. The growth process of the nanoparticles was monitored by the UV–vis spectra. The mechanism of the formation copper nanoparticles was discussed. The process raised in this study can be served as an excellent candidate for the preparation of copper nanoparticles in a large scale production.  相似文献   

16.
Metal–oxide–semiconductor structures (MOS) with the embedded Co nanoparticles (NPs) were efficiently fabricated by utilizing an external laser irradiation technique for the application of nonvolatile memory. Images of high resolution transmission electron microscopy measurements exhibited that the Co NPs of 5 nm in diameter were clearly embedded in SiO2 gate oxide. Capacitance–voltage measurements certainly exhibited flat-band voltage shift of 2.2 V from 2 V to −8 V in sweeping range. The retention characteristics of MOS capacitors with the embedded Co NPs were also studied as a function of tunnel oxide thickness to confirm the suitability of nonvolatile memory devices with metal NPs. The experimental results reveal that our unique laser process will give possible promise for experimental efficient formation or insertion of metal NPs inside the gate oxide.  相似文献   

17.
Nano-structure of a new 0D Pb(II) coordination supramolecular compound, [Pb4(8-Quin)6](ClO4)2(1), L = 8-HQuin = 8-hydroxyquinolin ligand has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and elemental analyses. The structure of compound 1 was determined by single-crystal X-ray diffraction. The single crystal X-ray data of compound 1 implies that the Pb+2 ions are five coordinated. Each lead atom is coordinated to nitrogen and oxygen atoms of 8-hydroxyquinolin ligand. Topological analysis shows that the compound 1 is 1,2,3,4,4M12-1net. Nanoparticles of lead(II) oxide have been prepared by calcination of lead(II) coordination polymer at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and IR spectroscopy.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(6):2010-2019
This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride–ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV–visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80 °C) and under ultrasonic conditions (F = 20 kHz, PT = 5.8 W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of CuII/CuI. On the other hand, temperature is more beneficial than ultrasound for mass transfer of CuI/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F = 20 kHz, PT = 5.6 W at 50 °C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T = 25 °C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound.  相似文献   

19.
In the present work, silver nanoparticles (Ag NPs)/graphene nanocomposite has been synthesized successfully by simple solvothermal method via green route. Citric acid is used as green reducing agent for the reduction of graphene oxide (GO) and Ag ions. Silver nitrate is used as a precursor material for Ag NPs. As synthesized Ag NPs/graphene nanocomposite has been characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infra-red spectroscopy, UV–vis spectroscopy, thermal gravimetric analysis, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Experimental results confirm the reduction of GO and the successful formation of Ag NPs decorated graphene nanosheets. In addition, spray coating technique is employed for the fabrication of transparent conducting films. Enhancement in the optoelectrical signatures has been achieved using thermal graphitization of fabricated films. Thermal graphitization at 800 °C for 1 h marks the best performance of fabricated film with sheet resistance of ~3.4 kΩ/□ and transmittance (550 nm) of ~66.40%, respectively.  相似文献   

20.
Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum (Al) with copper oxide (CuO) was the only mixture to ignite by electrostatic discharge. Under the loose powder conditions of these experiments, the Al–CuO minimum ignition energy (MIE) is 25 mJ and exhibited an electrical conductivity two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号