首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic and optical properties of AlxIn1−xSb ternary alloys have been investigated using a pseudopotential approach within the virtual crystal approximation. The effect of alloy disorder on the studied properties has been examined and found to be weak. The extent of the direct-to-indirect band gap transition is found to occur at x = 0.73. Our results agree well with those reported in the literature. Trends in bonding and ionicity are discussed by means of the electron charge distribution. The present study may be a useful information for mid-infrared inter band cascade lasers applications and other antimonide device structures.  相似文献   

2.
《Current Applied Physics》2010,10(3):838-841
The low-temperature conductivity of InxGa1−xN alloys (0.06  x  0.135) is analyzed as a function of indium composition (x). Although our InxGa1−xN alloys were on the metallic side of the metal–insulator transition, neither the Kubo-Greenwood nor Born approach were able to describe the transport properties of the InxGa1−xN alloys. In addition, all of the InxGa1−xN alloys took place below the Ioeffe–Regel regime with their low conductivities. The observed behavior is discussed in the framework of the scaling theory. With decreasing indium composition, a decrease in thermal activation energy is observed. For the metal–insulator transition, the critical indium composition is obtained as xc = 0.0543 for InxGa1−xN alloys.  相似文献   

3.
《Solid State Ionics》2006,177(19-25):1743-1746
We synthesized BaIn1−xCoxO3−δ (x = 0–0.8) with a defective perovskite structure by partly replacing In with Co in Ba2In2O5. Based on XRD measurements, the synthesized compound was found to have cubic perovskite and orthorhombic brownmillerite structures depending on the amount of Co. BaIn1−xCoxO3−δ (x = 0.2 and 0.3) showed high total electrical conductivities without undergoing the structural transformation that the original Ba2In2O5 undergoes. Some of the samples showed both electronic and oxide ionic conductivities. At the same time, the oxide ionic conductivity was comparable with that of Ba2In2O5. For example, the sample with x = 0.1 had a total electrical conductivity of 4.7 × 10 1 S cm 1 and an oxide ion transport number of 0.52 at 850 °C.  相似文献   

4.
《Solid State Ionics》2006,177(17-18):1395-1403
Solid state sintering has been used to prepare the cubic perovskite structured compounds BaZr1−xInxO3−δ (0.0  x  0.75). Analysis of X-ray powder diffraction (XRPD) data reveals that the unit cell parameter, a, increases linearly with an increased Indium concentration. XRPD data was also used to demonstrate the completion of sample hydration, which was reached when the materials showed a set of single-phase Bragg-peaks. Dynamic thermogravimetric analysis (TGA) data showed that approx. 89% of the total number of available oxygen vacancies can be filled in BaZr1−xInxO3−δ for x = 0.50, and that the maximum water uptake occurs below 300 °C. Rietveld analysis of the room temperature neutron powder diffraction (NPD) data confirmed the average cubic symmetry (space group Pm-3m), and an expansion of the unit cell parameter after the hydration reaction. The strong O–H stretch band, 2500–3500 cm 1, in the infrared absorbance spectrum clearly manifests the presence of protons in the hydrated material. Proton conductivity of hydrated BaZr1−xInxO3−δ, x = 0.75 was investigated during heating and cooling cycles under dry argon atmosphere. The total conductivity during the heating cycle was nearly two orders of magnitude greater than that of cooling cycle at 300 °C, whilst these values were similar at higher temperatures i.e. T > 600 °C.  相似文献   

5.
Metal–insulator–semiconductor structures based on n-Hg1−xCdxTe (x = 0.19–0.25) were grown by molecular-beam epitaxy on the GaAs (0 1 3) substrates. Near-surface graded-gap layers with high CdTe content were formed on both sides of the epitaxial HgCdTe. Admittance of these structures was studied experimentally in a wide temperature range (8–150) K. It is shown that an increase in the composition of the working layer and a decrease in temperature lead to a decrease in the frequency of transition to high-frequency behavior of the capacitance–voltage characteristics. The differential resistance of space charge region in the strong inversion increases with the composition of the working layer and for x = 0.22 and 0.25, the differential resistance is limited by the Shockley-Read generation. The values of the differential resistance of space charge region at different frequencies and temperatures were found.  相似文献   

6.
Au/silicon nitride/In0.82Al0.18As metal insulating semiconductor (MIS) capacitors were fabricated and then investigated by capacitance voltage (CV) test at variable frequencies and temperatures. Two different technologies silicon nitride (SiNx) films deposited by inductively coupled plasma chemical vapor deposition (“ICPCVD”) and plasma enhanced chemical vapor deposition (“PECVD”) were applied to the MIS capacitors. Fixed charges (Nf), fast (Dit) and slow (Nsi) interface states were calculated and analyzed for the different films deposition MIS capacitors. The Dit was calculated to be 4.16 × 1013 cm−2 eV−1 for “ICPCVD” SiNx MIS capacitors, which was almost the same to that of “PECVD” SiNx MIS capacitors. The Dit value is obviously higher for the extended wavelength InxGa1−xAs (x > 0.53) epitaxial material as a result of lattice mismatch with substrate. Compared to the results of “PECVD” SiNx MIS capacitors, the Nsi was significantly lower and the Nf was slightly lower for “ICPCVD” SiNx MIS capacitors. X-ray photoelectron spectroscopy (XPS) analysis shows good quality of the “ICPCVD” grown SiNx. The low temperature deposited SiNx films grown by “ICPCVD” show better effect on decreasing the dark current of InxGa1−xAs photodiodes.  相似文献   

7.
Using double heterojunction structure with linearly graded InxAl1–xAs as buffer layer and In0.9Al0.1As as cap layer, wavelength extended In0.9Ga0.1As detectors with cutoff wavelength of 2.88 μm at room temperature have been grown by using gas source molecular beam epitaxy, their characteristics have been investigated in detail and compared with the detectors cutoff at 2.4 μm with similar structure as well as commercial InAs detectors. Typical resistance area product R0A of the detectors reaches 3.2 Ω cm2 at 290 K. Measured peak detectivity reaches 6.6E9 cm Hz1/2/W at room temperature.  相似文献   

8.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

9.
The thin films of materials based on In–Se are under study for their applicability in photovoltaic devices, solid-state batteries and phase-change memories.The amorphous thin films of In2Se3−xTex (x=0–1.5) and InSe were prepared by pulsed laser deposition method (PLD) using a KrF excimer laser beam (λ=248 nm, 0.5 J cm−2) from polycrystalline bulk targets. The compositions of films verified by energy-dispersive X-ray analysis (EDX) were close to the compositions of targets. The surfaces of PLD films containing small amount of droplets were viewed by optical and scanning electron microscopy (SEM).The optical properties (transmittance and reflectance spectra, spectral dependence of index of refraction, optical gap, single-oscillator energy, dispersion energy, dielectric constant) of the films were determined.The values of index of refraction increased with increasing substitution of Te for Se in In2Se3 films, the values of the optical gap decreased with increasing substitution of Te for Se in In2Se3 films.  相似文献   

10.
《Solid State Ionics》2006,177(5-6):437-445
Structural and electronic properties of semiconductor binary microclusters AlnAsm anions have been investigated using the B3LYP-DFT method in the ranges of n = 1,2 and m = 1–7. Full structural optimization, adiabatic electron affinities calculation and frequency analysis are performed with the basis of 6–311 + G(d). The charged-induced structural changes in these anions have been discussed. The strong As–As bond is also favored over Al–As bonds in the AlnAsm anions in comparison with corresponding neutral cluster. Among different AlAsm and Al2Asm (m = 1–7) anions, AlAs4 and Al2As3 are most stable.  相似文献   

11.
《Solid State Ionics》2006,177(13-14):1163-1171
Oxygen non-stoichiometry and electrical conductivity of the Pr2−xSrxNiOδ series with x = 0.0–0.5 were investigated in Ar/O2 (pO2 = 2.5 to 21 000 Pa) within a temperature range of 20–1000 °C. The equilibrium values of oxygen non-stoichiometry and electrical conductivity of these nickelates were determined as functions of temperature and oxygen partial pressure (pO2). The nickelates with x = 0–0.5 appear to be p-type semiconductors in the investigated temperature and pO2 ranges. The nickelates with x = 0.3–0.5 show very feebly marked pO2 dependencies of the conductivity. Pr1.7Sr0.3NiOδ shows the anomalies of the conductivity versus oxygen partial pressure which can be related to the orthorhombic–tetragonal crystal structure transformations. The conductivity of the Pr2−xSrxNiOδ samples correlates with the average oxidation state of the nickel cations. The samples with x = 0.5 have the highest nickel oxidation state (≈ 2.5+), the highest [Ni3+]/[Ni2+] ratio close to 1 and show the highest conductivity (≈ 120 S/cm) in the whole pO2 and temperature ranges investigated.  相似文献   

12.
This article reports the parameters and characteristics of the new type of HgCdTe buried photodiodes operated at near-room temperature (T=200–300 K) in long wavelength infrared spectral range. The liquid phase epitaxy (LPE) Hg1−xCdxTe (x=0.16–0.20) layers were grown on holes etched in (1 0 0) CdZnTe substrate. Prior to layer deposition, the CdZnTe substrate has been etched to form the bars on 30 μm centers and 20-μm depth. Next, 20-μm thick HgCdTe epitaxial layer has been grown from Te-rich solution. The type of conductivity was controlled by deliberately doping with indium (n-type) and Sb (p-type). The Nomarski microscopy showed that the surface of specially prepared layers was flat and the composition of layers, measured by Fourier transform infrared microscopy, was homogenous. Samples were cleaved and examined in cross section by scanning electron microscopy. Finally, serial connected multi-junction photodiodes have been fabricated. It is shown that LPE can be used to realise advanced bandgap engineered multi-junction structures. This conclusion is supported by device quality characteristics: spectral response and detectivity.  相似文献   

13.
Using the semiclassical coherent radiation—semiconductor interaction model, optical nutation has been analysed in aGaAs / AlxGa1  xAs quantum well structure (QWS) assumed to be immersed in a moderately strong magnetic field and irradiated by a not-too-strong near band gap resonant femtosecond pulsed Ti–sapphire laser. The finite potential well depth of the QWS and the Wannier–Mott excitonic structure of the crystal absorption edge is taken into account. The excitation intensity is assumed to be below the Mott transition where the various many-body effects have been neglected with adequate reasoning. Numerical analysis made for a GaAs quantum well of thickness    100 Åand the confining layers ofAlxGa1  xAs withx =  0.3 at intensity I   5  ×  106Wcm  2reveals that the real and imaginary parts of the transient complex-induced polarization are enhanced with an increase in the magnetic field and their ringing behaviour confirms the occurrence of optical nutation in the QWS.  相似文献   

14.
《Solid State Ionics》2006,177(19-25):1807-1810
The crystal chemistry and mixed conductor properties of the n = 2 member of the Ruddlesden–Popper (R–P) phases Sr3−xLaxFe2−yNiyO7−δ with 0  x  0.3 and 0  y  1.0 have been studied at high temperature. High-temperature X-ray diffraction and thermogravimetric measurements of the equilibrium pO2 (10 5  pO2  1 atm) in the temperature range 400  T  1000 °C indicate that the Sr3FeNiO7−δ phase is able to accommodate a large oxygen non-stoichiometry (δ  1.5) without structural transformations. The electrical conductivity and oxygen permeability increase with the substitution of Ni for Fe in the range 550  T  1000 °C. The electrical transport of the Sr3FeNiO7−δ phase is thermally activated and the activation energy decreases with the substitution of Ni for Fe for a given oxygen content. The increase in the oxygen permeation flux with increasing Ni content is due to an increasing oxygen non-stoichiometry and a lower activation energy for permeation.  相似文献   

15.
《Solid State Ionics》2006,177(26-32):2699-2704
Composite salt-in-polymer electrolyte membranes were prepared from poly[(bis(2-methoxyethyl)amino)1−x(n-propylamino)x-phosphazene] (BMEAP) with dissolved LiCF3SO3 and dispersed Al2O3 nanoparticles (40 nm). Membranes with good mechanical stability were obtained. Low ionic conductivities were found in particle free membranes with maximum conductivities at 10 wt.% LiCF3SO3 ranging from 3.1 × 10 7 S/cm at 30 °C to 1.8 × 10 5 S/cm at 90 °C. For the composite membranes, addition of 2 wt.% Al2O3 nanoparticles leads to a steep increase of the conductivity by almost two orders of magnitude as compared to the homogeneous membranes. The highest room temperature conductivity for the investigated BMEAP–LiCF3SO3–Al2O3 composite systems was 10 5 S/cm.  相似文献   

16.
Variations of Vickers hardness were observed in Al–Mg–Mn alloy and Al–Mg–Mn–Sc–Zr alloy at different ageing times, ranging from a peak value of 81.2 HV at 54 ks down to 67.4 HV at 360 ks, below the initial hardness value, 71.8 HV at 0 ks for the case of Al–Mg–Mn–Sc–Zr alloy. Microstructures of samples at each ageing stage were examined carefully by transmission electron microscopes (TEMs) both in two-dimensions and three-dimensions. The presence of different types, densities, and sizes of particles were observed dispersed spherical Al3Sc1−xZrx and also block-shaped Al3Sc precipitates growing along <1 0 0>Al with facets {1 0 0} and {1 1 0} of the precipitates. TEM analysis both in two-dimensions and three-dimensions, performed on various samples, confirmed the direct correlation between the hardness and the density of Al3Sc.  相似文献   

17.
《Current Applied Physics》2010,10(4):1196-1202
New lead-free ceramics (Bi0.92Na0.92−xLix)0.5Ba0.06Sr0.02TiO3 have been fabricated by a conventional ceramic technique and their electrical properties have been studied. X-ray diffraction studies reveal that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. The partial substitution of Li+ for Na+ increases the remanent polarization Pr of the ceramics. Because of the large Pr and low coercive field Ec, the ceramics with x = 0.075–0.125 exhibit excellent piezoelectric properties: d33 = 189–235 pC/N, kp = 33.6–36.3% and kt = 51.6–54.3%. The ceramics exhibit relaxor behaviors after the substitution of Li+ for Na+. Our results also suggest that polar and non-polar phases may coexist in the ceramics at temperatures above the depolarization temperature Td.  相似文献   

18.
《Current Applied Physics》2010,10(3):734-739
CdxZn1−xSe films (0  x  1) were deposited for the first time by the pulse plating technique at different duty cycles in the range 6–50% at room temperature from an aqueous bath containing zinc sulphate, cadmium sulphate and selenium oxide. To the author’s knowledge this is the first report on pulse plated CdxZn1−xSe films. The deposition potential was −0.9 V (SCE). The as deposited films exhibited cubic structure. Composition of the films was estimated by Energy Dispersive Analysis of X-ray studies. X-ray photoelectron spectroscopy studies indicated the binding energies corresponding to Zn(2p3/2), Cd(3d5/2 and 3d3/2) and Se(3d5/2 and 3d3/2). Optical band gap of the films varied from 1.72 to 2.70 eV as the composition varied from CdSe to ZnSe side. Atomic force microscopy studies indicated grain size in the range of 20–150 nm.  相似文献   

19.
《Solid State Ionics》2006,177(26-32):2285-2289
Oxygen-ionic and electronic transport in dense (SrFe)1−x(SrAl2)xOz composites, consisting of strontium-deficient Sr(Fe,Al)O3-δ and SrAl2O4 phases, is determined by the properties of perovskite-like solid solution. Increasing the content of SrAl2O4, with a total conductivity as low as 5 × 10 7   10 S × cm 1 at 973–1273 K in air, results in the gradual decrease of the partial conductivities, but also enables the suppression of thermal expansion. Compared to single-phase SrFe1−xAlxO3-δ, (SrFe)1−x(SrAl2)xOz composites exhibit enhanced thermomechanical properties, while the oxygen permeability of these materials has similar values. The composite membranes exhibit stable performance under air/(H2–H2O–N2) and air/(CH4–He) gradients at 973–1173 K. The oxidation of dry methane by oxygen permeating through (SrFe)0.7(SrAl2)0.3Oz results in dominant total oxidation, suggesting the necessity to incorporate a reforming catalyst into the ceramic reactors for natural gas conversion.  相似文献   

20.
The series of Gd4 ? xMxAl2O9 ? x/2 (M = Ca, Sr) with x = 0, 0.01, 0.05, 0.10 and 0.25 was prepared by the citrate complexation method. Both Gd4 ? xCaxAl2O9 ? x/2 and Gd4 ? xSrxAl2O9 ? x/2 show the monoclinic cuspidine structure with space group of P21/c up to 0.05–0.1 and 0.01–0.05 mol for Ca and Sr, respectively. Beyond the substitution limit of Gd4Al2O9, GdAlO3 and SrGd2Al2O7 appear as additional phases. The highest electrical conductivity obtained at 900 °C yielded σ = 1.49 × 10? 4 S/cm for Gd3.95Ca0.05Al2O8.98. In comparison, the conductivity of pure Gd4Al2O9 was σ = 1.73 × 10? 5 S/cm. The conductivities determined are in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd4Al2O9 at 1000 °C was 7.4 × 10? 6 K? 1. The phase transition between 1100 and 1200 °C reported earlier changes with increasing substitution of Ca and Sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号