共查询到15条相似文献,搜索用时 15 毫秒
1.
We have demonstrated 384 × 288 pixels mid-wavelength infrared focal plane arrays (FPA) using type II InAs/GaSb superlattice (T2SL) photodetectors with pitch of 25 μm. Two p-i-n T2SL samples were grown by molecular beam epitaxy with both GaAs-like and InSb-like interface. The diode chips were realized by pixel isolation with both dry etching and wet etching method, and passivation with SiNx layer. The device one with 50% cutoff wavelength of 4.1 μm shows NETD ∼ 18 mK from 77 K to 100 K. The NETD of the other device with 50% cutoff wavelength at 5.6 μm is 10 mK at 77 K. Finally, the T2SL FPA shows high quality imaging capability at the temperature ranging from 80 K to 100 K which demonstrates the devices’ good temperature performance. 相似文献
2.
In this paper, we present an InAs/GaSb type-II superlattice (SL) with the M-structure for the fabrication of a long-wavelength (10 μm range) infrared (LWIR) focal plane arrays (FPA), which are grown by molecular beam epitaxy (MBE). The M-structure is named for the shape of the band alignment while the AlSb layer is inserted into the GaSb layer of InAs/GaSb SL. A 320 × 256 LWIR FPA has been fabricated with low surface leakage and high R0A product of FPA pixels by using anodic sulfide and SiO2 physical passivation. Experiment results show that the devices passivated with anodic sulfide obviously have higher R0A than the un-sulphurized one. The 50% cutoff wavelength of the LWIR FPA is 9.1 μm, and the R0A is 224 Ω cm2 with the average detectivity of 2.3 × 1010 cm Hz1/2 W−1. 相似文献
3.
R. Rehm M. Walther J. Schmitz J. Fleißner F. Fuchs J. Ziegler W. Cabanski 《Opto-Electronics Review》2006,14(1):19-24
The first fully operational mid-IR (3–5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice
showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized.
We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical
characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for
the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active
layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency.
Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays
after implementing this design improvement.
The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 595707 (2005). 相似文献
4.
Gail J. Brown Shanee Houston Frank Szmulowicz 《Physica E: Low-dimensional Systems and Nanostructures》2004,20(3-4):471
Type-II superlattices (SLs) can be designed for semiconductor band gaps as large as 400 meV down to semimetallic. This flexibility in design makes them an excellent candidate for infrared photodiodes with cut-off wavelengths beyond 15 μm. There are relatively few options for high-performance infrared detectors to cover wavelengths longer than 15 μm, especially for operating temperatures above 15 K. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection in the very long wavelength infrared (VLWIR) range (λ>15 μm). There is a variety of possible designs for these SLs which will produce the same narrow band gap by adjusting individual layer thicknesses, or indium content, in the InGaSb layer. Several of these different design options have been grown and characterized. These designs often require monolayer control per layer over hundreds of repeats in the SL. Photoresponse spectra for type-II SLs are compared to show how the design choices not only change the band gap but also the band structure, as reflected in features observed in the spectra. Theoretical modeling results are used to interpret the photoresponse spectra. SLs with cut-off wavelengths ranging from 15 to 25 μm are covered. 相似文献
5.
Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-Ⅱ In As/GaSb superlattice 下载免费PDF全文
A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×1010cm·Hz~(1/2)·W~(-1). The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK. 相似文献
6.
Herein, we report a type II InAs/GaSb superlattice structure (SLS) grown on GaSb(1 0 0) substrates by molecular beam epitaxy (MBE) and its electrical characterization for mid-wavelength infrared detection. A GaSb buffer layer was grown under optimized SLS growth conditions, which can decrease the occurrence of defects for similar pyramidal structures. The complications associated with these conditions include oxide desorption of the substrate, growth temperature of the SLS, the V/III ratio during superlattice growth and the shutter sequence. High-resolution X-ray diffraction (HRXRD) shows the sixth satellite peak, and the period of the SLS was 52.9 Å. The atomic force microscopy (AFM) images indicated that the roughness was less than 2.8 nm. High-resolution transmission electron microscopy (HRTEM) images indicated that the SLS contains few structural defects related to interface dislocations or strain relaxation during the growth of the superlattice layer. The photoresponse spectra indicated that the cutoff wavelength was 4.8 μm at 300 K. The SLS photodiode surface was passivated by a zinc sulfide (ZnS) coating after anodic sulfide. 相似文献
7.
Current–voltage characteristics of long-wave infrared (LWIR) InAs/GaSb strained layer superlattice photodiodes (cut-off wavelength ∼10 μm), passivated with different surface passivants, have been modeled and simulated using ATLAS software from SILVACO. The simulated results are fitted to previous experimental results obtained on unpassivated devices and those passivated by silicon-dioxide (SiO2), silicon nitride (SixNy) and zinc sulfide (ZnS). Surface parameters in terms of surface recombination velocity, shunt resistance and interface trap density are extracted for different passivants. The performance of silicon-dioxide passivated diode is solely dominated by a shunt leakage path with a shunt resistance value of 0.56 Ω-cm2. Extracted electron and hole surface recombination velocities have values of 105 cm/s and 107 cm/s for unpassivated, 103 cm/s and 105 cm/s for SixNy passivated and 102 cm/s and 103 cm/s for ZnS passivated devices. Interface trap density follows a similar trend with values of 1015 cm−2, 8.5 × 1014 cm−2 and 1010 cm−2 for unpassivated, SixNy passivated and ZnS passivated devices respectively. The suitability and limitations of the simulation tool are discussed. 相似文献
8.
Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array 下载免费PDF全文
In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm~2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm~2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm~2 and the average detectivity of 4.51 × 10~9 cm·Hz~(1/2).W~(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K. 相似文献
9.
Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy 下载免费PDF全文
Zhaojun Liu 《中国物理 B》2022,31(12):128503-128503
We systematically investigate the influence of InSb interface (IF) engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-II superlattices (T2SLs). The type-II superlattice structure is 120 periods InAs (8 ML)/GaSb (6 ML) with different thicknesses of InSb interface grown by molecular beam epitaxy (MBE). The high-resolution x-ray diffraction (XRD) curves display sharp satellite peaks, and the narrow full width at half maximum (FWHM) of the 0th is only 30-39 arcsec. From high-resolution cross-sectional transmission electron microscopy (HRTEM) characterization, the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished. As the InSb interface thickness increases, the compressive strain increases, and the surface "bright spots" appear to be more apparent from the atomic force microscopy (AFM) results. Also, photoluminescence (PL) measurements verify that, with the increase in the strain, the bandgap of the superlattice narrows. By optimizing the InSb interface, a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78 μ, which can be used for mid-wave infrared (MWIR) detection. 相似文献
10.
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas. 相似文献
11.
基于双材料微悬臂梁热变形原理的光学读出非制冷红外探测阵列经历了从有基底结构向无基底结构的发展过渡,无基底阵列的红外成像结果和有限元模型分析均表明无基底阵列不满足恒温基底条件.本文结合电学比拟的方法,提出了一种新的基于无基底焦平面阵列(focal plane Array,FPA)的热传递分析的理论模型.分析采用整体考虑的思路,避开了无基底FPA阵列各单元热传递互相影响所产生的复杂热分布分析,并考虑了框架对热量的吸收与传递.理论模型采用外边框与环境等温的边界条件,虽不及有限元方法对边界条件的处理灵活,但也已取
关键词:
光学读出
无基底
非制冷红外成像
焦平面阵列 相似文献
12.
H. J. Haugan G. J. Brown L. Grazulis K. Mahalingam D. H. Tomich 《Physica E: Low-dimensional Systems and Nanostructures》2004,20(3-4):527
The optimum growth conditions and strain balancing processes have been studied using molecular beam epitaxy (MBE) grown 51 Å InAs/40 Å GaSb type-II superlattices (SLs) designed to have cut-off wavelength of 10 μm. The most dominant factor in reducing the defect level in the SL structure was buffer growth temperature evidenced by transmission electron microscopy. In the study of the strain balancing process, the SLs could be lattice matched to the GaSb substrate by increasing the thickness of the InSb interfaces (IFs) from a nominal value of 1.0 to 1.4 ML, however, the structural quality degraded dramatically when the thickness of IFs reached beyond 1.0 ML. By optimizing the growth condition and MBE shutter sequences, micron thick InAs/GaSb SLs with a reduced lattice mismatch were routinely obtained with the full-width half-maximum of 18 arcsec, and the root mean square values of surface roughness of 2 Å in 5 μm area scan of atomic force microscopy demonstrating high quality. Correlation between material quality and photoresponse signal strength in photoconductivity measurements was made on SL samples with cut-off wavelength on the order of 10 μm. 相似文献
13.
H.J. Haugan F. Szmulowicz G.J. Brown B. Ullrich S. R Munshi L. Grazulis K. Mahalingam S.T. Fenstermaker 《Physica E: Low-dimensional Systems and Nanostructures》2006,32(1-2):289
Using a newly developed envelope function approximation model that includes interface effects, several InAs/GaSb type-II superlattices (SL) for the 4 μm (around 310 meV) detection threshold were designed. The model predicts that a given threshold can be obtained with progressively thinner SL periods and the thinner designs can have higher mobility and longer Auger lifetime over the thicker designs. The proposed SL structures were grown by molecular-beam epitaxy. The band gaps of SLs determined by low-temperature photoluminescence (PL) remained constant PL peak energy around 340–320 meV with distinctively different designs in the period range from 50.2 to 21.2 Å. Correlation between SL material quality and the full-width at half-maximum (FWHM) of the luminescence peak were made. In situ annealing after SL growth improved surface morphologies and the FWHM of the emission peak for the annealed SL samples were slightly narrower than those of non-annealed SLs. 相似文献
14.
Infrared thermal imaging, using cooled and uncooled detectors, is continuously gaining attention because of its wide military and civilian applications. Futuristic requirements of high temperature operation, multispectral imaging, lower cost, higher resolution (using pixels) etc. are driving continuous developments in the field. Although there are good reviews in the literature by Rogalski [1–4], Martyniuk et al. [5] and Rogalski et al. [6] on various types of infrared detectors and technologies, this paper focuses on some of the important recent trends and diverse applications in this field and discusses some important fundamentals of these detectors. 相似文献
15.
Grard Destefanis 《Comptes Rendus Physique》2003,4(10):1109-1120
The technology of very high performance cooled infrared detectors made with HgCdTe has progressed continuously for ten years and reached today an industrial maturity that allows the production of large size arrays at a more and more reasonable cost. At the same time, new prototypes of more complex sensors have appeared (megapixel arrays, multicolour arrays, high definition long linear arrays, …) that show the strong potentialities of this very high performance technology. This paper presents the technology developed in France and gives the state of the art of products available in industry; it then focuses on some very recent realizations of advanced prototypes made at LETI (dualband arrays, megapixel arrays, …). To cite this article: G. Destefanis, C. R. Physique 4 (2003). 相似文献