首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Droplets banding is critical to emulsion separation under ultrasonic irradiation as it can greatly improve the separation efficiency. In this paper, the formation process of droplets banding under ultrasonic standing waves was precisely captured by high-speed microscopic photography; by processing the images, the droplets banding characteristics, including the banding formation time and banding interval, were extracted. Then the effects of acoustic intensity, frequency, droplet size, and physical properties of oil and water on the droplets banding characteristics were discussed in details. The results show that the range of acoustic intensities, within which the droplets banding can form, increases with the increase of the frequency; a maximum allowable acoustic intensity exists for banding formation, which also increases with the frequency. The banding formation time, which increases with increasing oil viscosity but decreases with droplet size, is found to be hardly affected by the oil-water interfacial tension. In addition, the banding interval is only related to the frequency, which closely corresponds to the half wavelength.  相似文献   

2.
In this study, a numerical assessment of the coalescence of binary water droplets in water-in-oil emulsion was conducted. The investigation addressed the effect of various parameters on the acoustic pressure and coalescence time of water droplets in oil phase. These include transducer material, initial droplet diameter (0.05–0.2 in), interfacial tension (0.012–0.082 N/m), dynamic viscosity (10.6–530 mPas), temperature (20–100 °C), US (ultra sound) frequency (26.04–43.53 kHz) and transducer power (2.5–40 W). The materials assessed are lead zirconate titanate (PZT), lithium niobate (LiNbO3), zinc oxide (ZnO), aluminum nitride (AlN), polyvinylidene fluoride (PVDF), and barium titanate (BaTiO3). The numerical simulation of the binary droplet coalescence showed good agreement with experimental data in the literature. The US implementation at a fixed frequency produced enhanced coalescence (t = 5.9–8.5 ms) as compared to gravitational settling (t = 9.8 ms). At different ultrasound (US) frequencies and transducer materials, variation in the acoustic pressure distribution was observed. Possible attenuation of the US waves, and the subsequent inhibitive coalescence effect under various US frequencies and viscosities, were discussed. Moreover, the results showed that the coalescence time reduced across the range of interfacial tensions which was considered. This reduction can be attributed to the fact that lower interfacial tension produces emulsions which are relatively more stable. Hence, at lower interface tension between the water and crude oil, there was more resistance to the coalescence of the water droplets due to their improved emulsion stability. The increment of the Weber number at higher droplet sizes leads to a delay in the recovery of the droplet to spherical forms after their starting deformation. These findings provide significant insights that could aid further developments in demulsification of crude oil emulsions under varying US and emulsion properties.  相似文献   

3.
The motion of a single water droplet in oil under ultrasonic irradiation is investigated with high-speed photography in this paper. First, we described the trajectory of water droplet in oil under ultrasonic irradiation. Results indicate that in acoustic field the motion of water droplet subjected to intermittent positive and negative ultrasonic pressure shows obvious quasi-sinusoidal oscillation. Afterwards, the influence of major parameters on the motion characteristics of water droplet was studied, such as acoustic intensity, ultrasonic frequency, continuous phase viscosity, interfacial tension, and droplet diameter, etc. It is found that when the acoustic intensity and frequency are 4.89 W cm−2 and 20 kHz respectively, which are the critical conditions, the droplet varying from 250 to 300 μm in lower viscous oil has the largest oscillation amplitude and highest oscillation frequency.  相似文献   

4.
A method of rapid particle concentration in a droplet has been developed using surface acoustic wave (SAW) technology. A droplet was partially placed on a surface acoustic wave propagation path, and particles were concentrated at the center of the droplet due to the asymmetry. The device consists of two IDTs and two reflectors. The one IDT is used for generating SAW and the opposite IDT is used for detecting output voltage signal amplitude, and then for calculating acoustic power density of a droplet. To investigate concentration effect of the device, starch suspension and rabbit blood cells were used in this paper. Different acoustic power density was applied ranging from 6.13 mw mm−2 to 210.9 mw mm−2. The concentration process occurs within 15 s under appropriate acoustic power density put on the droplet, which is much faster than currently available particle concentration mechanisms, and the method is also efficient, which concentrating the particles into an aggregate about one-fifth the size of the original droplet. Additional, the concentration process is no damage to bioparticles. This concentration method can improve greatly SAW biosensor system sensitivity.  相似文献   

5.
The quantitative performance of a "single half-wavelength" acoustic resonator operated at frequencies around 3 MHz as a continuous flow microparticle filter has been investigated. Standing wave acoustic radiation pressure on suspended particles (5-microm latex) drives them towards the center of the half-wavelength separation channel. Clarified suspending phase from the region closest to the filter wall is drawn away through a downstream outlet. The filtration efficiency of the device was established from continuous turbidity measurements at the filter outlet. The frequency dependence of the acoustic energy density in the aqueous particle suspension layer of the filter system was obtained by application of the transfer matrix model [H. Nowotny and E. Benes, J. Acoust. Soc. Am. 82, 513-521 (1987)]. Both the measured clearances and the calculated energy density distributions showed a maximum at the fundamental of the piezoceramic transducer and a second, significantly larger, maximum at another system's resonance not coinciding with any of the transducer or empty chamber resonances. The calculated frequency of this principal energy density maximum was in excellent agreement with the optimal clearance frequency for the four tested channel widths. The high-resolution measurements of filter performance provide, for the first time, direct verification of the matrix model predictions of the frequency dependence of acoustic energy density in the water layer.  相似文献   

6.
The removal of the adsorbed oil droplet is critical to deoiling treatment of oil-bearing solid waste. Ultrasonic cavitation is regarded as an extremely useful method to assist the oil droplets desorption in the deoiling treatment. In this paper, the effects of cavitation micro-jets on the oil droplets desorption were studied. The adsorbed states of oil droplets in the oil-contaminated sand were investigated using a microscope. Three representative absorbed states of the oil droplets can be summarized as: (1) the individual oil droplet adsorbed on the particle surface (2) the clustered oil droplets adsorbed on the particle surface; (3) the oil droplet adsorbed in a gap between particles. The micro-jet generation during the bubble collapse near a rigid wall under different acoustic pressure amplitudes at an ultrasonic frequency of 20 kHz was investigated numerically. The desorption processes of the oil droplets at the three representative absorbed states under micro-jets were also simulated subsequently. The results showed that the acoustic pressure has a great influence on the velocity of micro-jet, and the initial diameter of cavitation bubbles is significant for the cross-sectional area of micro-jets. The wall jet caused by a micro-jet impacting on the solid wall is the most important factor for the removal of the absorbed oil droplets. The oil droplet is broken by the jet impinging, and then it breaks away from the solid wall due to the shear force generated by the wall jet. In addition to a higher sound pressure, the cavitation bubble at a larger initial diameter is more important for the desorption of the clustered oil droplets. Conversely, the micro-jet generated by the cavitation bubble at a smaller initial diameter (0.1 mm) is more appropriate for the desorption of the oil droplet in a narrow or sharp-angled gap.  相似文献   

7.
两种气泡混合的声空化   总被引:1,自引:0,他引:1       下载免费PDF全文
苗博雅  安宇 《物理学报》2015,64(20):204301-204301
将非线性声波方程和改进的Rayleigh-Plesset方程联立可以描述空化环境中的声场及相应的气泡动力学特征. 用时域有限差分方法模拟了圆柱形容器内两种气泡相互混合时的空化情况. 在烧杯内的稳态背景声场形成过程中, 瓶壁耗散吸收扮演了重要的角色. 在稳态背景声场的基础上, 分析了混合气泡与声场的相互作用、气泡之间的相互作用、混合情况下的频谱特性. 结果表明: 两种气泡平衡半径都不太大时, 气泡与声场的相互作用不强, 声场及气泡的行为也比较规律; 相反, 当其中一种气泡平衡半径相对比较大时, 声场与气泡具有较强的非线性相互作用, 声场及气泡的行为表现出复杂的特性.  相似文献   

8.
魏荣爵 《物理学报》1954,10(3):187-208
一.引言 低频声音在霧气中的衰减的测量可以在充霧的混响室中行之,但是这种测定方法只限制在一些分立的低频率——即相当于混响室的低简正振动方式。为了使这种测量能够在较广的连续频程中进行,作者採取了阻抗管的驻波分析方  相似文献   

9.
While ultrasound has been used in many medical and industrial applications, only recently has research been done on phase transformations induced by ultrasound. This paper presents a numerical model and the predicted results of the phase transformation of a spherical nanosized droplet of perfluorocarbon in water. Such a model has applications in acoustic droplet vaporization, the generation of gas bubbles for medical imaging, therapeutic delivery and other biomedical applications.The formation of a gas phase and the subsequent bubble dynamics were studied as a function of acoustic parameters, such as frequency and amplitude, and of the physical aspects of the perfluorocarbon nanodroplets, such as chemical species, temperature, droplet size and interfacial energy. The model involves simultaneous applications of mass, energy and momentum balances to describe bubble formation and collapse, and was developed and solved numerically. It was found that, all other parameters being constant, the maximum bubble size and collapse velocity increases with increasing ultrasound amplitude, droplet size, vapor pressure and temperature. The bubble size and collapse velocity decreased with increasing surface tension and frequency. These results correlate with experimental observations of acoustic droplet vaporization.  相似文献   

10.
采用激光干涉方法对水下声辐射激励水表面声波的特征参数频率和振幅进行了测量研究。从理论上对水表面声波激光相干测量信号的频谱构成进行了分析,在此基础上提出了水表面声波两个重要声学参数频率和振幅的解算方法,并通过数值仿真进行了验证。搭建了一套简单的激光干涉测量实验系统,对不同频率和声压激励的水表面声波进行了测量实验,验证了水表面声波频率和振幅解调方法的准确性。对水表面声波横向传播的振幅衰减现象进行了初步的实验研究,结果表明水表面声波的频率越高,振幅的横向衰减越快。研究表明激光相干检测方法能够准确地实现水表面声波振幅和频率的测量。  相似文献   

11.
Minimising oil droplet size using ultrasonic emulsification   总被引:1,自引:0,他引:1  
The efficient production of nanoemulsions, with oil droplet sizes of less than 100 nm would facilitate the inclusion of oil soluble bio-active agents into a range of water based foods. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper, we demonstrate that it is possible to create remarkably small transparent O/W nanoemulsions with average diameters as low as 40 nm from sunflower oil. This is achieved using ultrasound or high shear homogenization and a surfactant/co-surfactant/oil system that is well optimised. The minimum droplet size of 40 nm, was only obtained when both droplet deformability (surfactant design) and the applied shear (equipment geometry) were optimal. The time required to achieve the minimum droplet size was also clearly affected by the equipment configuration. Results at atmospheric pressure fitted an expected exponential relationship with the total energy density. However, we found that this relationship changes when an overpressure of up to 400 kPa is applied to the sonication vessel, leading to more efficient emulsion production. Oil stability is unaffected by the sonication process.  相似文献   

12.
The present study numerically investigates liquid-jet characteristics of acoustic cavitation during emulsification in water/gallium/air and water/silicone oil/air systems. It is found that a high-speed liquid jet is generated when acoustic cavitation occurs near a minute droplet of one liquid in another. The velocity of liquid jet significantly depends on the ultrasonic pressure monotonically increasing as the pressure amplitude increases. Also, the initial distance between cavitation bubble and liquid droplet affects the jet velocity significantly. The results revealed that the velocity takes maximum values when the initial distance between the droplet and cavitation bubble is moderate. Surprisingly, the liquid jet direction was found to depend on the droplet properties. Specifically, the direction of liquid jet is toward the droplet in the case of water/gallium/air system, and vice versa the jet is directed from the droplet in the case of water/silicone oil/air system. The jet directionality can be explained by location of the high-pressure spot generated during the bubble contraction.  相似文献   

13.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

14.
关昭  梁威 《应用声学》2019,38(2):208-216
该文提出利用兰姆波在倾斜的镜子基板上推动油水混合液滴,实现油水的微分离。实验主要研究了油水混合液滴在分离过程中的运动位移特性关系。运用Navier-Stokes、声流力等方程进行理论分析,发现混合液滴在分离过程中水滴所受到的驱动力大于油滴。通过对实验多变量的控制、单一变量的研究、建立油水混合液滴在倾斜镜子基板上受力平衡方程,发现激发电压、油水混合比例、基板倾角三个因素对油水微分离位移实验有着重要的影响。结果表明:当基板倾角和油水混合比例一定时,油水分离位移随着激发电压的增大而减小;在激发电压和基板倾角不变时,油水分离位移随着油水混合比例的减小而减小;当激发电压和油水混合比例不变时,油水分离位移随着基板倾角的增大而减小。该油水分离方法可以被应用到其他非压电基板上,为获得其他两种不相溶混合液滴的分离提供技术支持。  相似文献   

15.
Ultrasonic emulsification of oil and water was carried out and the effect of irradiation time, irradiation power and physicochemical properties of oil on the dispersed phase volume and dispersed phase droplet size has been studied. The increase in the irradiation time increases the dispersed phase volume while decreases the dispersed phase droplets size. With an increase in the ultrasonic irradiation power, there is an increase in the fraction of volume of the dispersed phase while the droplet size of the dispersed phase decreases. The fractional volume of the dispersed phase increases for the case of groundnut oil-water system while it is low for paraffin (heavy) oil-water system. The droplet size of soyabean oil dispersed in water is found to be small while that of paraffin (heavy) oil is found to be large. These variations could be explained on the basis of varying physicochemical properties of the system, i.e., viscosity of oil and the interfacial tension. During the ultrasonic emulsification, coalescence phenomenon which is only marginal, has been observed, which can be attributed to the collision of small droplets when the droplet concentration increases beyond a certain number and the acoustic streaming strength increases.  相似文献   

16.
微泡对高强度聚焦超声声压场影响的仿真研究*   总被引:2,自引:1,他引:1  
微泡对高强度聚焦超声(HIFU)治疗焦域具有增效作用,而HIFU治疗中不同声学条件下微泡对HIFU形成声压场的影响尚不清楚。本文基于气液混合声波传播方程、Keller气泡运动方程、时域有限差分(FDTD)法和龙格-库塔(RK)法数值仿真研究输入声压、激励频率、气泡初始空隙率和气泡初始半径对HIFU形成声压场的影响。研究结果表明,随着输入声压的增大,焦点处声压升高但焦点处最大声压与输入声压的比值减小,焦点位置几乎不变;随着激励频率和气泡初始半径的增大,焦点处声压升高且焦点位置向远离换能器方向移动;随着气泡初始空隙率的增大,焦点处声压降低且焦点位置向换能器方向移动。  相似文献   

17.
Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60 nm) of the emulsion was obtained at HLB of 14, S/O1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5 min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced.  相似文献   

18.
李水  易燕  张军 《声学学报》2020,45(2):275-280
设计了一种原波频率500 kHz、差频范围1~30 kHz的截断宽带参量阵,作为水声材料测量系统的声源。通过分析典型频率下的宽带参量源指向性理论计算和实际测量结果,发现两者结果的曲线基本吻合,证明计算模型是正确的。应用钟形短时脉冲实现水声材料声特性的宽带测量,有益于降低样品边缘衍射干扰。并建立了测量水声材料大面积板状样品声压反射系数、声压透射系数和吸声系数的压力罐测量系统,罐体内尺寸Φ4 m×12 m,最高静水压4.5 MPa,测量频率范围1~30 kHz。对标准样品(尺寸1m×1m)进行了测量实验,其测量结果和理论曲线有很好的吻合,参量源测量法得到了验证;之后,通过对一块橡胶板样品在不同静压力下的吸声性能进行了测量和有效评估,进一步确认了参量源测量法在压力罐这样有限水域中的潜在应用价值。  相似文献   

19.
沈壮志 《物理学报》2015,64(12):124702-124702
以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.  相似文献   

20.
驻波声场中悬浮临界密度及稳定性研究   总被引:1,自引:0,他引:1  
本文以声场中物体为研究对象,理论上得到行波和驻波场中的声辐射压力方程.在驻波声场中引入临界悬浮密度概念,可作为物体能否在非线性声场中悬浮的判据,同时给出谐振腔移动速度的最大范围.更进一步,以实验参数作为数值计算的输入来指导实验,并结合实验结果讨论了驻波声场中样品密度和大小、发射面和反射面形状以及两者之间的距离、反射面的尺寸等因素对物体悬浮稳定性的影响,发现当物体尺寸和密度确定时,调控好谐振腔的长度,增加波腹处的声压是提升声悬浮稳定性的有效手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号