首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tm3+/Ho3+ co-doped NaLa(WO4)2 single crystal was successfully grown by the Czochralski method. The crystal was characterized by room temperature absorption spectra, fluorescence spectra around 2 μm, up-conversion fluorescence and luminescence decay measurements. Spectroscopic properties related to the laser operation around 2 μm of Ho3+ ions have been evaluated. The energy level scheme and energy transfer processes of Tm3+ and Ho3+ were analyzed. The obtained spectroscopic results show the crystal is a potentially host for Ho3+ 2 μm infrared laser.  相似文献   

2.
Erbium (Er)-doped fluoride crystals (YLF, BYF, CaF2, etc.) are well-known as active media for solid-state lasers emitting in IR and VIS spectral domains, and as materials for efficient near-IR to VIS upconversion. In this paper, we report on the study of conversion of IR light from an ~1.5 μm spectral region to an ~1 μm spectral domain in low-phonon RE-doped fluoride crystals CaF2 (RE=Er3+ Yb3+). Energy transfer processes taking place at selective pulsed and CW laser excitation are investigated experimentally. It is shown that in the CaF2:RE crystals efficient conversion of IR radiation from the ~1.5 μm region to the ~1 μm region occurs, and these crystals are perspective for using in spectral converters for enhancing solar cell efficiency.  相似文献   

3.
Efficiency as high as 26% is obtained for generation of mid-infrared radiation at 6.04 μm by frequency doubling of ammonia laser emission at 12.08 μm in a 15 mm long type-I cut AgGaSe2 crystal. The NH3 laser used for this work is optically pumped by a commercial TEA CO2 laser operating on 9.22 μm and produces pulsed output of ∼210 mJ with a duration of ∼200 ns at 12.08 μm. The generated radiation at 6.04 μm is separated out from the residual radiation at 12.08 μm by exploiting the principle of polarization dependent diffraction of reflection grating.  相似文献   

4.
A series of Cr,Er:Gd3Ga5O12 crystals with high concentrations of Er3 + were grown by Czochralski method. The absorption spectra, the up-conversion, near infrared (NIR) and mid-infrared (Mid-IR) luminescence spectra as well as the luminescence decay curves of Er: 4I13/2 and 4I11/2 levels were measured at room temperature. The spectroscopic properties of Cr,Er:Gd3Ga5O12 crystals and Cr–Er energy transfer processes were investigated. The spectroscopy of the Er3 +:4I11/2  4I13/2 transition was centralized to discuss, and the important optical parameters including luminescence lifetimes and the Cr–Er energy transfer efficiency are presented. Based on the comprehensive spectral analyses, 0.6 at.%Cr/50 at.%Er:GGG crystal is preferred as candidate of potential xenon lamp pumped ~ 2.7 μm laser in this work.  相似文献   

5.
A continuous-wave (CW) YAG laser (power: 0.75–0.9 J/s, irradiation time: 15 s–15 min) with a wavelength of 1064 nm is irradiated to 11.1Sm2O3·44.4BaO·44.4B2O3 glass, and the formation of β-BaB2O4 (β-BBO) crystalline dots with a diameter of 30–150 μm is confirmed from micro-Raman spectra. β-BBO crystals with around 200 μm length grow towards the interior of the glass. The incorporation of Sm3+ into β-BBO crystalline dots is suggested from micro-Raman and fluorescence spectra. The second harmonic generation is detected from the array (10×10=100 dots) of β-BBO crystalline dots, indicating that each crystalline dot formed by YAG laser irradiation is a nonlinear optical crystal. CW YAG laser irradiation to glass with Sm3+ ions is a nice technique for a spatially controlled crystal growth.  相似文献   

6.
A 1.94 μm Tm-doped fiber laser pumped tunable single-longitudinal-mode Ho:YLF laser with double etalons was reported for the first time. The maximum single-longitudinal-mode output power of 345 mW at 2051.6 nm was achieved at the absorbed pump power of 11.9 W, corresponding to a slope efficiency of 5.5% and an optical conversion efficiency of 2.9%. By regulating the angle of the F–P etalons, the output wavelength of the laser can be tuned from 2051.6 nm to 2063.3 nm. The single-longitude-mode Ho:YLF laser operating at 2 μm can be used as the seed laser source of coherent Doppler lidar, differential absorption lidar and so on.  相似文献   

7.
Complex investigations of the photoconductivity and photoinduced absorption together with the piezoelectric features were performed for the AgGaGeS4 semiconducting single crystals under the influence of 3.5 μs CO2 (80 mJ) pulsed laser emitting at 10.6 μm. These crystals are transparent in the wide spectral range 0.4–17 μm, which allows operating due to their properties in the spectral range covering the excitation of the phonons and electron subsystem. The piezoelectric properties show substantial increment during illumination by microsecond CO2 laser and irreversible relaxation after swathing off the laser excitation. The temperature dependent studies of absorption and photoconductivity confirm the main role of intrinsic defects forming the tails of electronic states below the bottom of conduction band gap. Principal role of IR-induced electron–phonon interactions in the observed changes of the piezoelectricity is demonstrated.  相似文献   

8.
An eye-safe KTA OPO pumped by a Nd:YLF laser is demonstrated and a comparison with that pumped by a Nd:YVO4 laser is performed. Although the slope efficiency of the continuous-wave free-running Nd:YLF laser is lower than that of the Nd:YVO4 laser, the performance of KTA OPOs pumped by the Q-switched Nd:YLF laser is better, especially at lower repetition rates. The slope efficiency of KTA OPO pumped by a Nd:YLF laser is 14.6% at 30 kHz and 11.04% at 10 kHz. The better energy storage ability of Nd:YLF makes it an excellent laser medium in IOPOs.  相似文献   

9.
Optical properties of a Ho-doped LaF3 single crystal have been detailed investigated as a promising material for 2 μm and 2.9 μm lasers for the first time. Judd–Ofelt theory was applied to analyze the absorption spectrum to determine the J–O intensity parameters Ωt(t=2,4,6), based on which the emission probabilities, branching ratio and radiative lifetime for the as-grown crystal were all calculated. The stimulated emission cross-sections of the 5I7  5I8 and 5I6  5I7 transitions were obtained by using the Fuchtbauer–Ladenburg method. The gain cross-section for 2 μm emission becomes positive once the population inversion level reaches 30%. The Ho:LaF3 crystal shows long fluorescence lifetime of 5I7 manifold (25.81 ms) as well as 5I6 manifold (10.37 ms) compared with other Ho3+-doped crystals. It can be proposed that the Ho:LaF3 crystal may be a promising material for 2 μm and 2.9 μm laser applications.  相似文献   

10.
We demonstrate a passively Q-switched all-solid-state laser system with intracavity Raman frequency conversion to the eye-safe spectral region. Laser oscillation at the 1.064 μm wavelength with a pulse repetition rate of several kilohertz was provided by a Nd:YAG crystal and a Cr:YAG passive absorber. Third Stokes oscillations at the 1.599 and 1.494 μm wavelengths were obtained in Ba(NO3)2 and PbWO4 crystals with output pulse energies of 5 μJ and 6 μJ, respectively. The results of the numerical simulation of the pulse dynamics are in good agreement with the experimental data.  相似文献   

11.
We report on the synthesis of highly ordered arrays of titania nanotubules and their applications in enhanced photoelectrochemical cells. Ordered arrays of titania nanotubules of ∼120 nm external diameter, ∼100 nm internal diameter, and ∼5 μm length were fabricated on transparent conductive oxide (TCO) glass substrates by sol–gel processes using in-house prepared anodic alumina templates. After thermal bonding and template removal, the resultant nanotubule structures were applied in dye-sensitized solar cells (DSCs). Overall photoconversion efficiency of nearly 4.8% was achieved with Ru-bipyridine dye, N719, and iodolyte liquid electrolyte. This remarkable performance, for electrodes only ∼5 μm thick, is attributed to an unexpectedly high short-circuit photocurrent density of 16 mA/cm2 for masked cells and up to 17 mA/cm2 for unmasked cells. The enhanced short-circuit photocurrent (Jsc) is attributed to the high surface area (roughness factor ca. 1207) of the nanotubules and thus improved dye adsorption to the electrodes. The improved Jsc is also attributed to the parallel and vertical orientation of the nanostructures and thus to a well-defined electron diffusion path.  相似文献   

12.
Infrared fluorescence, energy transfer process, thermal stability and quantitative analysis of Tm3+ doped novel niobium silicate-germanate glasses have been investigated. The thermal stability changes indicate that the introduction of La2O3 to substitute for Nb2O5 can improve the anti-crystallization of present glass system. Intense 1.8 μm fluorescence has been achieved and the value of emission cross section can reach as high as 12.2 × 10−21 cm2. Besides, the microparameters of energy transfer were analyzed by the extended overlap integral method. Hence, the results indicate that the excellent spectroscopic characteristics of this kind of silicate-germanate glass together with the good thermal properties may become a promising matrix applied for 1.8 μm band near-infrared laser.  相似文献   

13.
Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.  相似文献   

14.
Yb-doped PbClF crystals were obtained by a modified Bridgman method. Broadband emission (FWHM=58 nm) with long lifetime (5.33 ms) was observed in 2.0% Yb3+-doped PbClF crystals. The Stark splitting of Yb3+ 2F7/2 level was calculated to be 801 cm?1 in 0.5% Yb3+-doped PbClF crystals, and the corresponding population of lower laser level is about 2.13%. All the results indicated that Yb-doped PbClF crystals should be a promising material to ultrashort pulses output at 1.0 μm.  相似文献   

15.
In this paper we report on the optical properties of triply Cr3+, Er3+, and RE3+ (RE=Tm, Ho, Eu) doped Gd3Ga5O12 crystals that were grown by the Czochralski method. Optical absorption, near-infrared (NIR), and mid-infrared (mid-IR) fluorescence spectra were characterized for the fabricated crystals and corresponding luminescence decay measurements under 654 nm excitation were also carried out. Based on the analysis of energy transfer process between Er and RE (RE=Tm, Ho, Eu) ions, the energy transfer efficiency (ETE) values were evaluated, correspondingly. From the spectral data of all the studied crystals, it is observed that the co-doped Cr3+ ion highly increases the absorption pump power and the three kinds of co-doped RE3+ ions depopulate the Er:4I13/2 energy level effectively. The spectral analysis shows that titled rare earth doped crystals are promising materials for ~3.0 μm mid-IR laser applications and among them Cr,Er,Eu:GGG is relatively more suitable due to its excellent optical properties compared with others.  相似文献   

16.
To inhibit the radiant infrared energy between 8 and 14 μm, which is the infrared atmospheric window, and decrease the echo power of detecting laser and radar, to achieve compatible stealth, a doping structural one-dimensional photonic crystal (1-D PC) with Ge, ZnSe and Si was fabricated; and then combine it with radar absorbing material (RAM) to make a compound. After that, the reflection spectra of this compound was tested, and the result shows a high average reflectance (89.5%) in 8–14 μm waveband, and a reflective valley (39.8%) in the wavelength of 10.6 μm, which is the wavelength of CO2 laser; and the reflectance in radar band shows that at high frequency, especially between 7.8 and 18 GHz, the radar power is strongly absorbed by this material and the reflected energy attenuate over 10 dB within the range from 11.1 GHz to 18.3 GHz, even 24.5 dB to the most in the frequency of 14.6 GHz.  相似文献   

17.
Maximal optical nonlinearity obtainable in amorphous materials at telecommunication wavelengths of ∼1.5 μm is predicted. Applying a semiconductor concept, we suggest that nonlinear properties become greater in the materials with smaller optical gaps. This trend makes the chalcogenide glass such as As2Se3 promising for fiber devices (∼1 m), including optical switches, intensity stabilizers, and stimulated Raman amplifiers. However, for integrated devices with optical path lengths of ∼1 cm, greater nonlinearity is needed.  相似文献   

18.
Efficient eye-safe 1.6 μm monolithic laser was realized in a c-cut, 0.7-mm-thick Er3+:Yb3+:YAl3(BO3)4 microchip end-pumped by a quasi-continuous-wave 970 nm diode laser. At incident pump peak power of 20.4 W, a maximum output peak power of 2.6 W with a slope efficiency of 19% was obtained when the waist radius of pump laser beam was 220 μm. The spectra and profiles of output beam of the Er3+:Yb3+:YAl3(BO3)4 monolithic laser were measured. The influences of the waist radius of pump laser beam on the slope efficiency and threshold of the monolithic laser were also investigated.  相似文献   

19.
The optical properties of the ErxYb2?xSi2O7 thin films were investigated by photoluminescence measurements and the intense 974 nm light emission was observed. The 974 nm emission was mainly from the transition 2F5/2 to 2F7/2 level of Yb3+ upon exploring energy-transfer via up-conversion at Er3+ 4I13/2 level. Under 972 nm excitation, the lifetime at Er3+ 4I13/2 level reaches up to 4 ms for film containing 2 at% Er3+, while decreases to about 20 μs as the film is pumped by 488 nm. This confirmed that the energy transfer up-conversion process was the dominant transition at Er3+ 4I13/2 level. This may be of interest to improve the solar cells′ efficiency by placing this film at the rear of cell, converting the near-infrared photons between 1480 nm and 1580 nm to just above the Si bandgap.  相似文献   

20.
Output performance of a continuous-wave (CW) laser diode end-pumped passively Q-switched Tm,Ho:YLF laser is demonstrated with a Cr:ZnS crystal as the saturable absorber. We particularly investigate the influence of saturable absorber's position in the resonator when the Cr:ZnS crystal is placed close to and far from the laser beam waist. We compare the experimental results at the two different positions, and find that the laser shows unusual output characteristics when the Cr:ZnS saturable absorber is placed close to the beam waist. The pulse width and the pulse energy almost keep constant, measured about 1.25 μs and 4 μJ respectively, when the pump power is changed in the range of 1–1.9 W. Moreover, the pulse repetition frequency can be tuned between 1.3 kHz and 2.6 kHz by changing the pump power. The output wavelength of the passively Q-switched laser shifts to 2053 nm from 2067 nm in CW operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号