首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The governing equation of wave motion of viscoelastic SWCNTs (single-walled carbon nanotubes) with surface effect under magnetic field is formulated on the basis of the nonlocal strain gradient theory. Based on the formulated equation of wave motion, the closed-form dispersion relation between the wave frequency (or phase velocity) and the wave number is derived. It is found that the size-dependent effects on the phase velocity may be ignored at low wave numbers, however, is significant at high wave numbers. Phase velocity can increase by decreasing damping or increasing the intensity of magnetic field. The damping ratio considering surface effect is larger than that without considering surface effect. Damping ratio can increase by increasing damping, increasing wave number, or decreasing the intensity of magnetic field.  相似文献   

2.
Wave propagation in single-walled carbon nanotubes (SWCNTs) conveying fluids and placed in multi-physical fields (including magnetic and temperature fields) is studied in this paper. The nanotubes are modelled as Timoshenko beams. Based on the nonlocal beam theory, the governing equations of motion are derived using Hamilton's principle, and then solved by Galerkin approach, leading to two second-order ordinary differential equations (ODEs). Numerical simulations are carried out to verify the analytical model proposed in the present study, and determine the influences of the nonlocal parameter, the fluid velocity and flow density, the temperature and magnetic field flux change, and the surrounding elastic medium on the wave behaviour of SWCNTs. The results show that the nonlocal parameter has a considerable influence on dynamic behaviour of the nanotube and the fluid flow inside it. The results also show that the magnetic and temperature fields play an important role on the wave propagation characteristics of SWCNTs.  相似文献   

3.
Theoretical predictions are presented for wave propagation in nonlinear curved single-walled carbon nanotubes (SWCNTs). Based on the nonlocal theory of elasticity, the computational model is established, combined with the effects of geometrical nonlinearity and imperfection. In order to use the wave analysis method on this topic, a linearization method is employed. Thus, the analytical expresses of the shear frequency and flexural frequency are obtained. The effects of the geometrical nonlinearity, the initial geometrical imperfection, temperature change and magnetic field on the flexural and shear wave frequencies are investigated. Numerical results indicate that the contribution of the higher-order small scale effect on the shear deformation and the rotary inertia can lead to a reduction in the frequencies compared with results reported in the published literature. The theoretical model derived in this study should be useful for characterizing the mechanical properties of carbon nanotubes and applications of nano-devices.  相似文献   

4.
In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.  相似文献   

5.
Based on the nonlocal strain gradient theory and Timoshenko beam model, the properties of wave propagation in a viscoelastic single-walled carbon nanotube (SWCNT) are investigated. The characteristic equations for flexural and shear waves in visco-SWCNTs are established. The influence of the tube size on the wave dispersion is clarified. For a low damping coefficient, threshold diameter for shear wave (SW) is observed, below which the phase velocity of SW is equal to zero, whilst flexural wave (FW) always exists. For a high damping coefficient, SW is absolutely constrained, and blocking diameter for FW is observed, above which the wave propagation is blocked. The effects of the wave number, nonlocal and strain gradient length scale parameters on the threshold and blocking diameters are discussed in detail.  相似文献   

6.
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton’s principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can’t propagate in MEE nanobeams.  相似文献   

7.
Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators.  相似文献   

8.
The propagation characteristics of the longitudinal wave in a piezoelectric nanoplate were investigated in this study. The nonlocal elasticity theory was used and the surface effects were taken into account. In addition, the group velocity and phase velocity were derived and investigated, respectively. The dispersion relation was analyzed with different scale coefficients, wavenumbers, and voltages. The results showed that the dispersion degree can be strengthened by increasing the wavenumber and scale coefficient.  相似文献   

9.
Dispersion relation of single-walled carbon nanotubes (SWCNTs) is investigated. The governing equations of motion of SWCNTs are derived on the basis of the gradient shell model, which involves one strain gradient and one higher order inertia parameters in addition to two Lamé constants. The present shell model can predict wave dispersion in good agreement with those of molecular dynamic (MD) simulations available in the literature. The effects of two small scale parameters on the angular frequency and phase velocity in the longitudinal, torsional and radial directions are studied in detail. The numerical results show that the angular frequency and phase velocity increase with the increase of strain gradient parameter, whereas decrease with inertia gradient parameter increases. In addition, analytical expressions of the cut-off frequencies and asymptotic phase velocities are given. It is found that the number of cut-off frequencies is dependent on the circumferential wave number, and two asymptotic phase velocities exist for nonzero value of strain gradient parameter, while only one exists when the strain gradient parameter is excluded.  相似文献   

10.
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.  相似文献   

11.
The effect of the induced vibrations in the carbon nanotubes (CNTs) arising from the internal fluid flow is a critical issue in the design of CNT-based fluidic devices. In this study, in-plane vibration analysis of curved CNTs conveying fluid embedded in viscoelastic medium is investigated. The CNT is modeled as a linear elastic cylindrical tube where the internal moving fluid is characterized by steady flow velocity and mass density of fluid. A modified-inextensible theory is used in formulation and the steady-state initial forces due to the centrifugal and pressure forces of the internal fluid are also taken into account. The finite element method is used to discretize the equation of motion and the frequencies are obtained by solving a quadratic eigenvalue problem. The effects of CNT opening angle, the elastic modulus and the damping factor of the viscoelastic surrounded medium and fluid velocity on the resonance frequencies are elucidated. It is shown that curved CNTs are unconditionally stable even for a system with sufficiently high flow velocity. The most results presented in this investigation have been absent from the literature for fluid-induced vibration of curved CNTs embedded in viscoelastic foundations.  相似文献   

12.
管长和管径对单壁碳纳米管电导的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
基于紧束缚模型,发展转移矩阵方法研究了单壁碳纳米管的导电性质.研究表明,由于卷曲效应,锯齿型(3k,0)管(k为整数)出现窄的电导沟,其大小与能隙一致.在费米能附近,电子输运不仅与管径和管长紧密相关,而且电子在不同能量下可能出现弹道的、扩散的和经典的三种不同输运特征. 关键词: 碳纳米管 转移矩阵 电导  相似文献   

13.
罗煜聘  田力耕  李明宪  李丰颖 《中国物理 B》2010,19(2):27102-027102
The influencing range of a vacancy defect in a zigzag single-walled nanotube is characterized with both structural deformation and variation in bandstructure. This paper proposes a microscopic explanation to relate the structural deformation to the bandstructure variation. With an increasing defect density, the nanotubes become oblate and the energy gap between the deep localized gap state and the conducting band minimum state decreases. Theoretical results shed some light on the local energy gap engineering via vacancy density for future potential applications.  相似文献   

14.
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.  相似文献   

15.
秦威  张振华  刘新海 《物理学报》2011,60(12):127303-127303
利用计入卷曲效应的单壁碳纳米管(SWCNT)的能量色散关系,计算最低导带的电子速度及有效质量,并与不计入卷曲效应的结果进行了比较.计算结果表明:卷曲效应对电子速度及有效质量的影响与SWCNT的类型密切相关,金属锯齿型SWCNT对卷曲效应最为敏感,其次是扶手椅型SWCNT,最不敏感的是半导体锯齿型SWCNT.由此可以推断,卷曲效应对金属锯齿型SWCNT电子结构及低偏压输运特性影响最大,其次是扶手椅型SWCNT,影响最不明显的是半导体锯齿型SWCNT.这些结果与实验测量及密度泛函理论计算结果完全一致. 关键词: 单壁碳纳米管 卷曲效应 电子速度 电子有效质量  相似文献   

16.
肖杨  颜晓红  曹觉先  丁建文 《物理学报》2003,52(7):1720-1725
通过五步旋转操作方便地得到了不同位置原子间的力常数矩阵,从而可以使对各种不同类型管的声子谱的计算变得简便. 计算表明,非螺旋的扶手椅型(n, n)管与锯齿型(n, 0)管的非简并和二重简并模式数分别为12和6(n-1),这与从群论等方法所得结果相符. 关键词: 纳米碳管 声子谱 振动模式密度 动力学矩阵  相似文献   

17.
杨杰  董全力  江兆潭  张杰 《中国物理 B》2010,19(12):127104-127104
This paper studies in detail the electronic properties of the semimetallic single-walled carbon nanotubes by applying the symmetry-adapted tight-binding model.It is found that the hybridization of π-σ states caused by the curvature produces an energy gap at the vicinity of the Fermi level.Such effects are obvious for the small zigzag and chiral single-walled carbon nanotubes.The energy gaps decrease as the diameters and the chiral angles of the tubes increase,while the top of the valence band and the bottom of the conduction band of armchair tubes cross at the Fermi level.The numeral results agree well with the experimental results.  相似文献   

18.
Thanks to the brilliant mechanical properties of single-walled carbon nanotubes (SWCNTs), they are suggested as high speed nanoscale vehicles. To date, various aspects of vibrations of SWCNTs have been addressed; however, vibrations and instabilities of moving SWCNTs have not been thoroughly assessed. Herein, vibrational properties of an axially moving SWCNT with simply supported ends are studied using nonlocal Rayleigh beam theory. Employing assumed mode and Galerkin methods, the discrete governing equations pertinent to longitudinal, transverse, and torsional motions of the moving SWCNT are obtained. The resulting eigenvalue equations are then numerically solved. The speeds corresponding to the initiation of the instability within the moving nanostructure are calculated. The roles of the speed of the moving SWCNT, small-scale parameter, and aspect ratio on the characteristics of longitudinal, transverse, and torsional vibrations of axially moving SWCNTs are scrutinized. The obtained results show that the appearance of the small-scale parameter would result in the occurrence of both divergence and flutter instabilities at lower levels of the speed.  相似文献   

19.
李瑞  胡元中  王慧  张宇军 《中国物理 B》2008,17(11):4253-4259
In this paper, single-walled carbon nanotubes (SWCNTs) are studied through molecular dynamics (MD) simulation. The simulations are performed at temperatures of 1 and 300K separately, with atomic interactions characterized by the second Reactive Empirical Bond Order (REBO) potential, and temperature controlled by a certain thermostat, i.e. by separately using the velocity scaling, the Berendsen scheme, the Nose-Hoover scheme, and the generalized Langevin scheme. Results for a (5,5) SWCNT with a length of 24.5 nm show apparent distortions in nanotube configuration, which can further enter into periodic vibrations, except in simulations using the generalized Langevin thermostat, which is ascribed to periodic boundary conditions used in simulation. The periodic boundary conditions may implicitly be applied in the form of an inconsistent constraint along the axis of the nanotube. The combination of the inconsistent constraint with the cumulative errors in calculation causes the distortions of nanotubes. When the generalized Langevin thermostat is applied, inconsistently distributed errors are dispersed by the random forces, and so the distortions and vibrations disappear. This speculation is confirmed by simulation in the case without periodic boundary conditions, where no apparent distortion and vibration occur. It is also revealed that numerically induced distortions and vibrations occur only in simulation of nanotubes with a small diameter and a large length-to-diameter ratio. When MD simulation is applied to a system with a particular geometry, attention should be paid to avoiding the numerical distortion and the result infidelity.  相似文献   

20.
Jiaqian Li 《Molecular physics》2013,111(7):753-763
The dispersion of longitudinal and transverse waves in (n,0)–(2n,0) intramolecular junctions (IMJs) are investigated using an atomistic finite element method (FEM). The transient responses of IMJs with different connection types subjected to harmonic incident wave were modelled using three-dimensional elastic beams of carbon bonds and point masses. The linkage between the force-field constants of molecular mechanics and input parameters of beam and mass elements was established through the molecular structural mechanics approach. The wave dispersion simulated by FEM shows good agreement with that of the non-local elastic model in a wide frequency range up to the terahertz region. It is shown that both the microstructure of conical part (connection part) and the coupling of longitudinal vibration and transverse vibration brought by the conicity play important roles in the dispersion of longitudinal and transverse wave in a single-walled IMJ. The amplitude decay of longitudinal wave depended on the distance propagating; the wavelength and the structure in connection part are examined. The results show that the dispersion of the decay of the wave amplitude in IMJ with less pentagon–heptagon defects has a better agreement with analytical results of macroscopic conical shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号