首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Density functional theory (DFT) calculations were applied at the M05-2X/6-311++G(d,p) level of the theory to investigate the interaction of the B12N12 nanocage (BN) and alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) in the gas phase and in water. On the basis of the results, BN nanocage is able to form a selective complex with Li+. Water, as a solvent, reduces the stability of the metal ion-BN complexes in comparison with the gas phase. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses, reveal that the electrostatic interaction between the BN and metal ions can be considered as the driving force for complex formation in which the role of water is of significance. Density of states (DOSs) analysis of the BN nanocage structure in the presence of different metal ions showed a noticeable change in the frontier orbitals, especially in the gas phase, and Fermi level shifting toward the lower values.  相似文献   

2.
《印度化学会志》2023,100(1):100805
Aluminum nitride and boron nitride nanocages have recently been discovered. The properties of these compounds vary according to their size. In this paper, we study the adsorption of MELs on aluminum nitride and boron nitride nanocages in the solution phase using density functional theory. The results of adsorption energies indicate that during the adsorption on aluminum nanocages, ether oxygen atoms show stronger adsorption, while adsorption is stronger on boron nitride nanocage from the hydroxyl group oxygen. The results of thermodynamic calculations indicate that all adsorption positions of aluminum nitride are thermodynamically favorable. However, in the case of boron nitride, some positions are thermodynamically unfavorable. In terms of recovery time, borne nitride is not a good adsorbent because of very small recovery time. The aluminum nitride may be able to behave as a suitable sensor for the MELs in the solution phase. Nevertheless, boron nitride does not have this capability, since it does not significantly change the number of conducting electrons.  相似文献   

3.
The sensor based on WO3-Cr2O3 nanocomposites show good selectivity to 2-butanone.  相似文献   

4.
The adsorption of penicillamine (PCA) on pure B12N12 and B12CaN12 nanocages in aqueous and chloroform solvents has been evaluated using density functional theory (DFT) calculations. The interaction of PCA on B12N12 nanocages is chemisorption through its four nucleophilic sites: amine, carbonyl, hydroxyl and thiol. The most stable adsorption configuration was achieved when zwitterionic PCA adsorbs via its carbonyl group in water with value of ?1.723 eV, in contrast, when neutral PCA adsorbs via its amine group in chloroform with value of ?1.68 eV. Intercalated calcium ion within B12N12 nanocage (B12CaN12) was shown to attract PCA onto nanocage surface, resulting in higher solubility and adsorption energy after their complexation in water and chloroform. The adsorption of multiple PCA molecules from their amine and carbonyl groups on pure and B12CaN12 nanocages were also evaluated where two and three molecules can be chemisorbed on boron atoms of the nanocage surfaces with the adsorption energy per PCA reduces slightly with the increasing the amount of drugs due to the curvature effects. Molecular docking study indicates that PCA from its NH2 group on B12CaN12 nanocage has the best binding affinity and inhibition potential of tumor necrosis factor-alpha (TNF-α) and Interleukin-1 (IL-1) receptors as compared with the other adsorption systems. Molecular docking and ADMET analysis displayed that the chosen compounds pass Lipinski Rule and have appropriate pharmacokinetic features suitable as models for developing anti-inflammatory agents.  相似文献   

5.
6.
The influences of H2O and SO2 on CeO2/TiO2 monolith catalyst for the selective catalytic reduction(SCR) of NOx with NH3 were investigated. In the absence of SO2, H2O inhibited the SCR activity, which might be ascribed to the competitive adsorption of H2O and reactants such as NH3 and/or NOx. SO2 could promote the SCR activity of CeO2/TiO2 monolith catalyst in the absence of H2O, while in the presence of H2O it speeded the deactivation. During the SCR reaction in SO2-containing gases, Ce(III) sulfate species formed on the catalyst surface, resulting in the enhancement of Brønsted acidity. This played a significant role in the enhanced SCR activity. However, in the presence of both H2O and SO2, a large amount of ammonium-sulfate salts formed on the catalyst surface, which resulted in the blocking of catalyst pores and deactivated the catalyst. In addition, the NOx conversion was more sensitive to gas hourly space velocity in the presence of H2O than in the absence of H2O. The relatively high space velocity would result in a higher formation rate of ammonium-sulfate salts on per unit catalyst in the presence of H2O and SO2, which caused obvious deactivation of Ce/TiO2 monolith catalyst.  相似文献   

7.
《Comptes Rendus Chimie》2017,20(7):758-764
It has been previously indicated that pristine graphene cannot detect NO2 gas. Nanographene is a segment of graphene whose end atoms are saturated with hydrogen atoms and its properties are different from those of graphene. Herein, we investigated the reactivity, electronic sensitivity, and structural properties of hexa-peri-hexabenzocoronene (HBC) nanographene toward NO2 gas using density functional theory calculations. It was found that the central and peripheral rings of HBC are aromatic but the middle rings are non-aromatic, following Clar's sextet rule of aromaticity. The NO2 molecule prefers to be adsorbed on the central ring with a nitro configuration, releasing an energy of about 13.2 kJ/mol. The NO2 molecule significantly stabilizes the LUMO level of the HBC, thereby reducing the HOMO–LUMO energy gap from 3.60 to 1.35 eV. This indicates that the HBC is converted from a semiconductor to a semimetal. It was shown that the adsorption of NO2 gas by HBC can produce an electrical signal selectively in the presence of O2, H2, N2, CO2, and H2O gases. A short recovery time about 1.9 ns is predicted and the effect of density functional is investigated.  相似文献   

8.
The guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and the substituted derivatives [TBD–SiR2]+ and TBD–BR2 reacted with SO2 to give different FLP–SO2 adducts. Molecular structures, elucidated by X-ray diffraction, showed some structural similarities with the analogous CO2 adducts. Thermodynamic stabilities were both experimentally evidenced and computed through DFT calculations. The underlying parameters governing the relative stabilities of the different SO2 and CO2 adducts were discussed from a theoretical standpoint, with a focus on the influence of the Lewis acidic moiety.  相似文献   

9.
研究气体放电对SO2和亚硫酸盐氧化的影响,采用了直流电源和交直流叠加电源进行气体放电.结果表明,气体放电对于SO2氧化促进作用很少;但对溶液中的SO32-的氧化则有明显促进作用.通过对两个反应过程的机理分析,认为亚硫酸盐溶液氧化快是因为气体放电产生的OH等自由基和液相里的亚硫酸根起作用,引发链反应,促进了溶液中四价硫被空气中的O2氧化为六价硫的过程.而气相中的SO2与OH等自由基作用不能形成链反应,所以影响不明显.实验表明,选择交直流叠加电源进行气体放电比用纯粹直流电源放电效果更好.  相似文献   

10.
Density functional molecular cluster calculations have been used to investigate the interaction of SO(2) with defect-free TiO(2)(110) and Ti(2)O(3)(102) surfaces. Adsorbate geometries and chemisorption enthalpies have been computed and discussed. Several local minima have been found for TiO(2)(110), but only one seems to be relevant for the catalytic conversion of SO(2) to S. In agreement with experiment, the bonding of SO(2) to Ti(2)O(3)(102) is much stronger than that on TiO(2)(110). Moreover, our results are consistent with the surface oxidation and the formation of strong Ti-O and Ti-S bonds. On both substrates, the bonding is characterized by a two-way electron flow involving a donation from the SO(2) HOMO into virtual orbitals of surface Lewis acid sites (), assisted by a back-donation from surface states into the SO(2) LUMO. However, the localization of surface states and the strength of back-donation are very different on the two surfaces. On TiO(2)(110), back-donation is weaker, and it involves unsaturated bridging O atoms, while on Ti(2)O(3)(102), it implies the -based valence band maximum and significantly weakens the S-O bond.  相似文献   

11.
An experimental study on protonation of simple weakly basic molecules (L) by the strongest solid superacid, H(CHB11F11), showed that basicity of SO2 is high enough (during attachment to the acidic H atoms at partial pressure of 1 atm) to break the bridged H‐bonds of the polymeric acid and to form a mixture of solid mono‐ LH+???An?, and disolvates, L?H+?L. With a decrease in the basicity of L=CO (via C), N2O, and CO (via O), only proton monosolvates are formed, which approach L?H+?An? species with convergence of the strengths of bridged H‐bonds. The molecules with the weakest basicity, such as CO2 and weaker, when attached to the proton, cannot break the bridged H‐bond of the polymeric superacid, and the interaction stops at stage of physical adsorption. It is shown here that under the conditions of acid monomerization, it is possible to protonate such weak bases as CO2, N2, and Xe.  相似文献   

12.
A series of linear and hyperbranched polyester epoxies, with varied structural parameters such as kinked structure and different dendritic architectures, were synthesized by A2 + B2, A2 + B3, A3 + B2, and A3 + B3 approaches. The structures of synthesized monomers and polymers were confirmed by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopic techniques. The effect of varied structural parameters on phase behavior and photoresponsive properties was investigated by using differential scanning calorimeter, thermal optical polarized microscope, UV–visible spectroscopy, photoviscosity, and refractive index studies. The transition temperatures of hyperbranched polymers were higher than that of the corresponding linear analogues. All the polymers showed nematic phase (nematic droplets) over a broad temperature range. The effect of kinked structural unit on photoresponsive property is less in both linear and hyperbranched architectures. Although the effect of architectural nature is highly considerable within the hyperbranched architectures, the polymer (HPE–33) synthesized by A3 + B3 approach showed highest rate of photocrosslinking, followed by HPE–I 32; HPE–T 32, and HPE–23, which were synthesized by A3 + B2 and A2 + B3 approaches, respectively. The findings in photoresponsive properties were further supported by molecular modeling studies. Substantial variation of refractive index (0.015–0.024) indicates that these polymers could be used for optical recording. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
钙钛矿型CO氧化催化剂耐SO2中毒性质的研究   总被引:4,自引:0,他引:4  
钙钛矿型CO氧化催化剂耐SO2中毒性质的研究马春曦王宝辉(大庆石油学院石油化工系安达151400)关键词钙钛矿型催化剂一氧化碳氧化硫中毒近年来,人们对钙钛矿型复合物CO氧化催化剂作了大量研究,证明其具有很高的CO氧化活性[1-3],并开始尝试应用于汽...  相似文献   

14.
Hydrogen is regarded as the next-gen fuel for vehicles to avoid the emission of toxic gases, which needs a continuous monitoring of the concentration level. In the design of the H2 sensor, especially of flexible type, a sensing layer will be blended, which affects the sensing performance of the device. Based on this concern, the present investigation is carried out to understand the effect of the bending angle toward the sensing performance of bare and ZnO (n-type)-decorated Sb2O3 (p-type) nanobelt–based sensors for hydrogen gas. The sensing element was prepared by the thermal chemical vapor deposition followed by the drop-casting method. Furthermore, the role of the zinc precursor (molar concentration—1 M–3 M) on the preparation of ZnO-decorated Sb2O3 nanobelts was studied. Various techniques were used to confirm the formation of ZnO-decorated nanobelts such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR). From these analyses, 1 M concentration of the zinc precursor shows uniform distribution of nanoparticles over the surface of Sb2O3 nanobelts. However, agglomeration was observed when the concentration of the zinc precursor increases from 1 M to 3 M. Later, the prepared nanobelts were deposited on the OverHead Projector (OHP) sheet by the doctor blade method for sensing hydrogen gas at 100 °C at a concentration of 1000–3000 ppm. In addition to it, the effect of the substrate bending angle (0°, 45°, 60°, and 90°) was analyzed at a fixed concentration of H2 gas (1000 ppm). From this study, it is clear that the highest sensing response was achieved for 1 M decorated nanobelts compared with bare as well as other concentrations because of uniform distribution of nanoparticles on the surface of nanobelts. Moreover, the prepared sample demonstrates better sensing performance with the bending of substrates, which suggests that the prepared sensor could be used for flexible electronic devices. The prepared nanobelts show a good H2 gas–sensing response even with bending of the substrates. The work suggests that the prepared sensor is applicable for flexible electronic devices.  相似文献   

15.
ZrO2和Al2O3在金红石型TiO2表面的包覆研究   总被引:3,自引:0,他引:3  
以(NaPO3)6为分散剂,用化学沉积法对金红石型TiO2进行了锆、铝氧化物包膜。研究了包覆过程中,TiO2的分散、ZrO2和Al2O3用量、反应pH值以及时间对二氧化钛的亨特白度(Wh)和光泽度(L)的影响,并采用扫描电镜(SEM)、透射电镜(TEM)、X光电子能谱(XPS)和沉降性试验对包覆前后的二氧化钛进行了表征,得到包锆、包铝氧化物的优化工艺条件。研究了二氧化钛表面包锆、铝氧化物的包覆机理和表面结构。经过其表面包膜处理,二氧化钛的颜料性能得到明显改善。  相似文献   

16.
The effects of SO2, V2O5 loading and reaction temperature on the activity of activated carbon supported vanadium oxide catalyst have been studied for the reduction of NO with NH3 at low temperatures (150-250℃). It is found that SO2 significantly promotes the catalyst activity. Both V2O5 loading and reaction temperature are vital to the promoting effect of SO2. The catalysts with V2O5 loadings of 1 -5 weight percent have a positive effect on the promotion of SO2, while the catalysts with V2O5 loadings of above 7 weight percent have not such an effect or show a negative effect. At lower temperatures (<180℃) SO2 poisons the catalyst but at higher temperatures promotes it. The reason of the SO2 promotion was also discussed; it may results from the formation of SO42- on the catalyst surface, which increases the surface acidity and hence the catalytic activity.  相似文献   

17.
The adsorption of a single H2O2 or H2O molecule on a family of periodic slab models of γ-AlOOH is studied by solid-state DFT. The single H2O2 or Н2О molecule interacts with the perfect (010) slab by intermolecular hydrogen bonds (H-bonds). In the models of γ-AlOOH with oxygen and aluminum vacancies, H2O2 or Н2О also forms covalent O∙∙∙Al bonds. The energies of covalent O∙∙∙Al and H-bonds are estimated by a combined approach based on simultaneous consideration of the total binding energies with BSSE correction and empirical schemes of the Н-bond energy evaluation. The O∙∙∙Al bond energy ranges from ~75 to ~156 kJ mol−1. The total energy of H-bond interactions in the case of H2O2 exceeds that of Н2О by ~30 kJ mol−1 for all considered slab models. In contrast to Н2О, a H2O2 molecule always forms two H-bonds as the proton donor. The energy of these bonds noticeably increase on defect γ-AlOOH surfaces in comparison with the perfect slab due to formation of short (strong) H-bonds by adsorbed H2O2.  相似文献   

18.
The H2O adsorption and dissociation on the Fe (100) surface with different precovered metals are studied by density functional theory. On both kinds of metal‐precovered surface, H2O molecules prefer adsorb on hollow sites than bridge and top sites. The impurity energy difference is proportional to the adsorption energy, but the adsorbates are not sensitive to the adsorption orientation and height relative to the surface. The Hirshfeld charge analysis shows that water molecules act as an electron donor while the surface Fe atoms act as an electron acceptor. The rotation and dissociation of H2O molecule occur on the Co‐ and Mn‐precovered surfaces. Some H2O molecules are dissociated into OH and H groups. The energy barriers are about 0.5 to 1.0 eV, whose are consistence with the experimental data. H2O molecules can be dissociated more easily at the top site on Co‐precovered surface 1 than that at bridge site on Mn‐precovered surface 2 because of the lower reaction barrier. The dispersion correction effects on the energies and adsorption configurations on Co‐precovered surface 1 were calculated by OBS + PW91. The dispersion contributions can improve a bit of the bond energy of adsorbates and weaken the hydrogen bond effect between adsorption molecules a little.  相似文献   

19.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

20.
The characteristics of CO and NO molecules at Cu2+ and Cr3+ ion sites on the CuCr2O4 (100) surface have been studied by first principles calculations based on spin‐polarized density functional theory (DFT). The calculated results show that adsorption energies for X‐down(C, N) adsorption vary in the order: Cu2+‐CO>Cr3+‐NO≈Cr3+‐CO>Cu2+‐NO. CO molecules are preferentially adsorbed at Cu sites, whereas NO molecules adsorb favorably at Cu2+ and Cr3+ ion sites. The C‐O and N‐O stretching frequencies are red‐shifted upon adsorption. Combining the analysis of frontier molecular orbitals and Mulliken charge, for CO and NO X‐down adsorption systems, the 5σ orbitals donate electrons and the 2π* orbitals obtain back‐donated electrons. Although for NO with O‐down adsorption systems, the NO‐2π* orbitals obtain back‐donated electrons from substrates without 5σ‐donation. Coadsorption calculations show the CO/NO mixture adsorb selectively at the Cu2+ion site but simultaneously at the Cr3+ ion site, respectively. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号