首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 9 毫秒
1.
In this paper, we propose a new approach to implementing boundary conditions in the lattice Boltzmann method (LBM). The basic idea is to decompose the distribution function at the boundary node into its equilibrium and non-equilibrium parts, and then to approximate the non-equilibrium part with a first-order extrapolation of the non-equilibrium part of the distribution at the neighbouring fluid node. Schemes for velocity and pressure boundary conditions are constructed based on this method. The resulting schemes are of second-order accuracy. Numerical tests show that the numerical solutions of the LBM together with the present boundary schemes are in excellent agreement with the analytical solutions. Second-order convergence is also verified from the results. It is also found that the numerical stability of the present schemes is much better than that of the original extrapolation schemes proposed by Chen et al. (1996 Phys. Fluids 8 2527).  相似文献   

2.
A numerical study using the lattice Boltzmann method has been carried out for flow through a rotating straight channel with a rectangular cross section. With different forces applied, the secondary flow exhibits two-cell states, four-cell states or six-cell states at a range of low rotational Reynolds number, however, within which only the two-cell states have been commonly reported. In addition to the force-dependent flow transition, a time-dependent flow transition of the secondary flow among two-cell states, four-cell states and six-cell states is also discovered during flow development. These newly found flow transitions and their regulations by force application have been analyzed. Based on numbers of case studies, it is found that a dimensionless number, the ratio of the driving pressure gradient to the centrifugal force, regulates such flow transitions. This study not only releases new phenomena of flow transition, but also indicates new applications in flow control, particle separation and heat transfer.  相似文献   

3.
陈佳民  蒋燕华  施娟  周锦阳  李华兵 《物理学报》2015,64(14):144701-144701
血栓引发的各种心血管疾病一直威胁着人们的健康. 在已经产生血栓的血管中, 脉动对于疏通血管有良好的作用. 由于血液的黏滞作用以及红细胞的惯性, 脉动流的频率会影响血管通栓的效果. 在分叉管模型中, 低压差的条件下, 由于另一畅通管子的导通作用减少了回流, 导致通栓效果不理想. 通过增大压差和提高脉动流的振幅, 降低畅通管子导通作用的影响, 研究脉动流在分叉管中的通栓效果. 研究发现, 脉动低频通栓效果好, 但是通栓需要的时间较长; 高频通栓时间短, 但是当频率高于一定值, 则通栓效果不明显. 细胞和管壁的摩察系数对通栓效果也有影响.  相似文献   

4.
顾娟  黄荣宗  刘振宇  吴慧英 《物理学报》2017,66(11):114701-114701
针对滑移区复杂气-固边界存在速度滑移现象,提出了一种基于格子Boltzmann方法的非平衡态外推与有限差分相结合的曲边界处理新格式.该格式具有可考虑实际物理边界与网格线偏移量的优势,较传统half-way DBB(diffusive bounce-back)格式更能准确反映实际边界情况,同时还可获取壁面处气体宏观量及其法向梯度等信息.采用本文所提曲边界处理格式模拟分析了滑移区气体平直/倾斜微通道Poiseuille流、微圆柱绕流和同心微圆柱面旋转Couette流问题.研究结果表明,采用曲边界处理新格式所得结果与理论值以及文献结果符合良好,适用于滑移区气体流动的复杂边界处理,且比half-way DBB格式具有更高的精度,较修正DBB格式具有更好的适应性.  相似文献   

5.
In this work, a computational model of magnetic resonance (MR) flow imaging is proposed. The first model component provides fluid dynamics maps by applying the lattice Boltzmann method. The second one uses the flow maps and couples MR imaging (MRI) modeling with a new magnetization transport algorithm based on the Eulerian coordinate approach. MRI modeling is based on the discrete time solution of the Bloch equation by analytical local magnetization transformations (exponential scaling and rotations).  相似文献   

6.
Minoru Watari 《Physica A》2007,382(2):502-522
The current finite difference lattice Boltzmann method (FDLBM) gives a fixed specific heat ratio because internal energy is limited to the translational freedom of the space. Yan et al. and Kataoka et al. clarified the conditions for deriving models with arbitrary specific heat ratio and proposed Euler models. However, these model applications to numerical simulations showed the weakness in the numerical stability. In this paper, a two-dimensional FDLBM Navier Stokes model and a three-dimensional FDLBM Euler model, which allow arbitrary values to be set for the specific heat ratio, were proposed. These models stably performed numerical simulations from subsonic to supersonic ranges.  相似文献   

7.
施娟  王立龙  周锦阳  薛泽  李华兵  王健  谭惠丽 《物理学报》2014,63(1):14702-014702
血液栓塞形成机理一直是学术界研究的热点.本文将以圆形刚性颗粒在分岔管中的运动模拟血液在微血管中的运动,对血液在分岔管中的栓塞现象作了初步研究.重点研究了当血管发生分岔时,血管中血液流速的变化以及血栓形成的概率.得出结论,压积越大越容易发生栓塞,压差越大越不易发生栓塞.分岔管的入口和分岔处最容易发生栓塞.血液经分岔管后,大管中的压积比小管的高.  相似文献   

8.
柴振华  施保昌  郑林 《中国物理》2006,15(8):1855-1863
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50,000 in the literature; however, this paper can readily extend the maximum to 1000,000 with the above combination.  相似文献   

9.
The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.  相似文献   

10.
When the lattice Boltzmann (LB) method is used to solve hydrodynamic problems containing a body force term varying in space and/or time, its modelling at the mesoscopic scale must be verified in terms of consistency in order to avoid the appearance of non-hydrodynamic error terms at the macroscopic scale. In the present work it is shown that the modelling of spatially varying steady body force terms in the LB equation must be different from the time-dependent case, when a steady-state flow solution is sought. For that, the Chapman-Enskog analysis is used to derive the LB body force model for the LB BGK equations in a steady-state flow problem. The theoretical findings are supported by numerical tests performed on two different 2D steady-state laminar flows driven by spatially varying body forces with known analytical solutions.  相似文献   

11.
蒋燕华  陈佳民  施娟  周锦阳  李华兵 《物理学报》2016,65(7):74701-074701
血液栓塞作为心血管疾病的一大诱因, 其形成机理及外部因素一直是医学、生物物理等领域专家关心的问题. 血栓的形成及其结构复杂多样, 大大增加了治愈血栓的难度. 脉动对于疏通血液栓塞有良好的作用, 而由于血液的黏滞作用以及红细胞的惯性, 脉动流的波形、振幅和频率都会影响通栓的效果. 本文主要基于晶格玻尔兹曼方法, 在栓塞的锥形管中, 用三角波脉动流进行通栓计算, 探索三角波脉动流的波形、压差、频率对血管通栓效果的影响. 计算发现, 低频低压条件下三角波脉动流通栓效果不明显, 而高频条件下通栓效果良好; 适当增加压差, 可以提高能通栓的三角波脉动流的频率.  相似文献   

12.
何宗旭  严微微  张凯  杨向龙  魏义坤 《物理学报》2017,66(20):204402-204402
运用格子Boltzmann方法研究了底部局部加热多孔介质方腔的自然对流传热.方腔的上壁面为低温热源,下壁面为局部高温热源,左右壁面为绝热条件.重点分析了高温热源位置a及尺寸b对多孔介质方腔自然对流传热性能的影响,提出了平均Nusselt数Nu和位置a及尺寸b的拟合关系式.研究结果表明:高温热源位置及尺寸对多孔介质方腔内自然对流传热性质的影响很大,且存在最佳高温热源位置(a=4/16)和尺寸(b=0.75),以达到最强的对流换热强度(Nu_(max)≈10.35)和最大的对流换热量(Q_(max)≈5.69).  相似文献   

13.
Le Bai 《中国物理 B》2022,31(3):34701-034701
A two-component lattice Boltzmann method (LBM) with a multiple-relaxation-time (MRT) collision operator is presented to improve the numerical stability of the single relaxation time (SRT) model. The macroscopic and the momentum conservation equations can be retrieved through the Chapman—Enskog (C-E) expansion analysis. The equilibrium moment with the diffusion term is calculated, a diffusion phenomenon is simulated by utilizing the developed model, and the numerical stability is verified. Furthermore, the binary mixture channel model is designed to simulate the sound attenuation phenomenon, and the obtained simulation results are found to be consistent with the analytical solutions. The sound attenuation model is used to study the numerical stability and calculation accuracy of the LBM model. The simulation results show the stability and accuracy of the MRT model and the SRT model under different viscosity conditions. Finally, we study the influence of the error between the macroscopic equation of the MRT model and the standard incompressible Navier—Stokes equation on the calculation accuracy of the model to demonstrate the general applicability of the conclusions drawn by the sound attenuation model in the present study.  相似文献   

14.
Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.  相似文献   

15.
A. Ebaid 《Physics letters. A》2008,372(24):4493-4499
The effects of both magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel are studied analytically and numerically. The channel asymmetry is generated by propagation of waves on the channel walls travelling with different amplitudes, phases but with the same speed. The long wavelength and low Reynolds number assumptions are considered in obtaining solution for the flow. The flow is investigated in a wave frame of reference moving with velocity of the wave. Closed form expressions have been obtained for the stream function and the axial velocity component in fixed frame. The effects of phase difference, Knudsen number and magnetic field on the pumping characteristics and velocity field are discussed. Several known results of interest are found to follow as particular cases of the solution of the problem considered.  相似文献   

16.
In this paper, a new lattice model of traffic flow is proposed to investigate wide moving jams in traffic flow with the consideration of the driver anticipation information about two preceding sites. The linear stability condition is obtained by using linear stability analysis. The mKdV equation is derived through nonlinear analysis, which can be conceivably taken as an approximation to a wide moving jam. Numerical simulation also confirms that the congested traffic patterns about wide moving jam propagation in accordance with empirical results can be suppressed efficiently by taking the driver anticipation effect of two preceding sites into account in a new lattice model.  相似文献   

17.
Interventions for peripheral arterial disease should be designed to treat a physiological rather than an anatomic defect. Thus, for vascular surgeons, functional information about stenoses is as important as the anatomic one. In case of finding a stenosis by the use of magnetic resonance angiography, it would be a matter of particular interest to derive automatically and directly objective information about the hemodynamic influence on blood flow, caused by patient-specific stenoses. We developed a methodology to noninvasively perform numerical simulations of a patient's hemodynamic state on the basis of magnetic resonance images and by the means of the finite element method. We performed patient-specific three-dimensional simulation studies of the increase in systolic blood flow velocity due to stenoses using the commercial computational fluid dynamic software package FIDAP 8.52. The generation of a mesh defining the flow domain with a stenosis and some simulation results are shown.  相似文献   

18.
19.
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号