首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to study the longitudinal frequency of a cracked nanobeam. The frequency equation of the nanobeam with clamped–clamped and clamped–free boundary conditions is derived based on the nonlocal elasticity theory. According to the equation, it can be found that the effects of the crack parameter, crack location, and nonlocal parameter on the longitudinal frequency of the cracked nanobeam are significant. The frequency decreases with an increase of the crack parameter. However, the increasing nonlocal parameter results in a decrease of the crack effect on the frequency. In addition, when the crack location is near the support, a larger decrease in the frequency can be observed.  相似文献   

2.
ABSTRACT

This article investigates wave propagation behavior of a multi-phase nanocrystalline nanobeam subjected to a longitudinal magnetic field in the framework of nonlocal couple stress and surface elasticity theories. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, couple stress and surface effects are omitted. Hamilton’s principle is employed to derive the governing equations which are solved by applying an analytical method. The frequencies are compared with those of nonlocal and couple stress-based beams. It is showed that wave frequencies and phase velocities of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, magnetic field, surface effect and nonlocality.  相似文献   

3.
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.  相似文献   

4.
The governing equation of wave motion of viscoelastic SWCNTs (single-walled carbon nanotubes) with surface effect under magnetic field is formulated on the basis of the nonlocal strain gradient theory. Based on the formulated equation of wave motion, the closed-form dispersion relation between the wave frequency (or phase velocity) and the wave number is derived. It is found that the size-dependent effects on the phase velocity may be ignored at low wave numbers, however, is significant at high wave numbers. Phase velocity can increase by decreasing damping or increasing the intensity of magnetic field. The damping ratio considering surface effect is larger than that without considering surface effect. Damping ratio can increase by increasing damping, increasing wave number, or decreasing the intensity of magnetic field.  相似文献   

5.
Theoretical predictions are presented for wave propagation in nonlinear curved single-walled carbon nanotubes (SWCNTs). Based on the nonlocal theory of elasticity, the computational model is established, combined with the effects of geometrical nonlinearity and imperfection. In order to use the wave analysis method on this topic, a linearization method is employed. Thus, the analytical expresses of the shear frequency and flexural frequency are obtained. The effects of the geometrical nonlinearity, the initial geometrical imperfection, temperature change and magnetic field on the flexural and shear wave frequencies are investigated. Numerical results indicate that the contribution of the higher-order small scale effect on the shear deformation and the rotary inertia can lead to a reduction in the frequencies compared with results reported in the published literature. The theoretical model derived in this study should be useful for characterizing the mechanical properties of carbon nanotubes and applications of nano-devices.  相似文献   

6.
7.
In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern–Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor. We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.  相似文献   

8.
This article presents a simplified three-unknown shear and normal deformations nonlocal beam theory for the bending analysis of nanobeams in thermal environment. Eringen's nonlocal constitutive equations are considered in the analysis. Governing equations are derived according to the present refined theory using Hamilton's principle. Central deflections of nanobeams under uniform and point loads are given and compared with the available ones in the literature. Additional results of displacement and stresses are presented for future comparison. The effects of nonlocality, temperature parameters, length of beam, length-to-depth ratio as well as shear and normal strains are all investigated.  相似文献   

9.
The propagation characteristics of the longitudinal wave in a piezoelectric nanoplate were investigated in this study. The nonlocal elasticity theory was used and the surface effects were taken into account. In addition, the group velocity and phase velocity were derived and investigated, respectively. The dispersion relation was analyzed with different scale coefficients, wavenumbers, and voltages. The results showed that the dispersion degree can be strengthened by increasing the wavenumber and scale coefficient.  相似文献   

10.
Based on the nonlocal strain gradient theory and Timoshenko beam model, the properties of wave propagation in a viscoelastic single-walled carbon nanotube (SWCNT) are investigated. The characteristic equations for flexural and shear waves in visco-SWCNTs are established. The influence of the tube size on the wave dispersion is clarified. For a low damping coefficient, threshold diameter for shear wave (SW) is observed, below which the phase velocity of SW is equal to zero, whilst flexural wave (FW) always exists. For a high damping coefficient, SW is absolutely constrained, and blocking diameter for FW is observed, above which the wave propagation is blocked. The effects of the wave number, nonlocal and strain gradient length scale parameters on the threshold and blocking diameters are discussed in detail.  相似文献   

11.
L.L. Zhang  X.Q. Fang  G.Q. Nie 《哲学杂志》2013,93(18):2009-2020
Within the framework of nonlocal elasticity, the surface layer model is proposed to investigate the wave propagation characteristics in a single-layered nanoplate. The general solutions of nonlocal governing equations are expressed using partial wave technique and the nonclassical boundary conditions are derived. The dispersion relation with the effects of surface and nonlocal small-scale is obtained, and the size-dependent dispersion behaviour is demonstrated. The impacts of surface elasticity, residual surface stress and nonlocal parameter on the dispersion curves of the lowest-order two modes are illustrated. Numerical examples reveal that both the surface effect and nonlocal small-scale effect can obviously decrease the magnitude of phase velocity, and the thinner nanoplate corresponds to the smaller wave velocity and the narrower frequency bandwidth.  相似文献   

12.
Wave propagation in single-walled carbon nanotubes (SWCNTs) conveying fluids and placed in multi-physical fields (including magnetic and temperature fields) is studied in this paper. The nanotubes are modelled as Timoshenko beams. Based on the nonlocal beam theory, the governing equations of motion are derived using Hamilton's principle, and then solved by Galerkin approach, leading to two second-order ordinary differential equations (ODEs). Numerical simulations are carried out to verify the analytical model proposed in the present study, and determine the influences of the nonlocal parameter, the fluid velocity and flow density, the temperature and magnetic field flux change, and the surrounding elastic medium on the wave behaviour of SWCNTs. The results show that the nonlocal parameter has a considerable influence on dynamic behaviour of the nanotube and the fluid flow inside it. The results also show that the magnetic and temperature fields play an important role on the wave propagation characteristics of SWCNTs.  相似文献   

13.
《Physics letters. A》2019,383(25):3101-3107
Applying nonlocal elasticity theory, von Kármán type nonlinear strain-displacement relation and plane wave expansion (PWE) method to Euler-Bernoulli beam, the calculation method of band structure of a nonlinear nonlocal piezoelectric phononic crystal (PC) nanobeam is proposed and formulized. In order to investigate the properties of wave propagating in the nanobeam in detail, band gaps of first four orders are picked, and the corresponding influence rules of electro-mechanical coupling fields, nonlocal effect and geometric parameters on band gaps are studied. During the researches, external electrical voltage and axial force are chosen as the influencing parameters related to electro-mechanical coupling fields. Scale coefficient is chosen as the influencing parameter corresponding to nonlocal effect. Length ratio between materials PZT-4 and epoxy and height-width ratio are chosen as the influencing parameters of geometric parameters. Moreover, all the influence rules are compared to those in linear nanobeam. The results are expected to be of help for the design of micro and nano devices based on piezoelectric periodic nanobeam.  相似文献   

14.
Comparisons between predictions of a Biot-Allard model allowing for angle-dependent elasticity and angle-and-porosity dependent tortuosity and transmission data obtained at normal incidence on water-saturated replica bones are extended to oblique incidence. The model includes two parameters which are adjusted for best fit at normal incidence. Using the same parameter values, it is found that predictions of the variation of transmitted waveforms with angle through two types of bone replica are in reasonable agreement with data despite the fact that scattering is not included in the theory.  相似文献   

15.
16.
By using biorthogonal decompositions, we show how uniformly propagating waves, togehter with their velocity, shape, and amplitude, can be extracted from a spatiotemporal signal consisting of the superposition of various traveling waves. The interaction between the different waves manifests itself in space-time resonances in case of a discrete biorthogonal spectrum and in resonant wavepackets in case of a continuous biorthogonal spectrum. Resonances appear as invariant subspaces under the biorthogonal operator, which leads to closed sets of algebraic equations. The analysis is then extended to superpositions of dispersive waves for which the (Fourier) dispersion relation is no longer linear. We then show how a space-time bifurcation, namely a qualitative change in the spatiotemporal nature of the solution, occurs when the biorthogonal operator is a nonholomorphic function of a parameter. This takes place when two eigenvalues are degenerate in the biorthogonal spectrum and when the spatial and temporal eigenvectors rotate within each eigenspace. Such a scenario applied to the superposition of traveling waves leads to the generation of additional waves propagating at new velocities, which can be computed from the spatial and temporal eigenmodes involved in the process (namely the shape of the propagating waves slightly before the bifurcation). An eigenvalue degeneracy, however, does not necessarily lead to a bifurcation, a situation we refer to as being self-avoiding. We illustrate our theoretical predictions by giving examples of bifurcating and self-avoiding events in propagating phenomena.  相似文献   

17.
In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.  相似文献   

18.
强非局域克尔介质中光束传输的变分问题   总被引:5,自引:4,他引:1  
 在非局域克尔介质中,光束的演化规律服从非局域非线性薛定谔方程。用变分法对此问题进行了重新表述。在强非局域的情况下,通过对介质响应函数进行泰勒展开,可以解析地表示变分问题。束宽的演化规律也可以定性地从光束束宽变分势得出。运用瑞利-里兹方法求解其变分方程,分别求出光束在自散焦和自聚焦介质中的变分解。对于自聚焦介质,当输入功率为某一特定值时,可以得到空间孤子,其束宽在传输过程中保持不变。通过与其他方法得到的解比较表明,变分法是解析讨论光束在非局域非线性介质中演化规律的方法之一。  相似文献   

19.
在非局域克尔介质中,光束的演化规律服从非局域非线性薛定谔方程。用变分法对此问题进行了重新表述。在强非局域的情况下,通过对介质响应函数进行泰勒展开,可以解析地表示变分问题。束宽的演化规律也可以定性地从光束束宽变分势得出。运用瑞利-里兹方法求解其变分方程,分别求出光束在自散焦和自聚焦介质中的变分解。对于自聚焦介质,当输入功率为某一特定值时,可以得到空间孤子,其束宽在传输过程中保持不变。通过与其他方法得到的解比较表明,变分法是解析讨论光束在非局域非线性介质中演化规律的方法之一。  相似文献   

20.
Based on the strain gradient and Eringen’s piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler–Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号