首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT – redaporfin – currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.  相似文献   

2.
We present a new cyclometalated Ir(Ⅲ) complexes Ir BDP, which could self-assemble into organic nanoparticles(IrBDP NPs). IrBDP NPs show enhanced photodynamic effect and can be engulfed by He La cells for cell imaging as well as photodynamic therapy(PDT) upon low energy irradiation.  相似文献   

3.
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.  相似文献   

4.
Immune checkpoints including PD-1 and CTLA-4 help to regulate the intensity and timeframe of the immune response. Since they become upregulated in cancer and prevent sufficient antitumor immunity, monoclonal antibodies against these checkpoints have shown clinical promise for a range of cancers. Multimodal treatment plans combining immune checkpoint inhibitors with other therapies, including photodynamic therapy (PDT), may help to expand treatment efficacy and minimize side effects. PDT's cytotoxic effects are spatially limited by the light activation process, constraining PDT direct effects to the treatment field. The production of damage-associated molecular patterns and tumor-associated antigens from PDT can encourage accumulation and maturation of antigen-presenting cells and reprogram the tumor microenvironment to be more susceptible to therapies targeting immune checkpoints.  相似文献   

5.
Photodynamic therapy can be useful for the eradication of malignant cells at sites that are accessible to light delivery. There are few adverse effects, with many clinical reports indicating that PDT has curative potential. Patients with minimal disease, where success is more likely, are also sought by those promoting other protocols. New photosensitizing agents that initiate light-catalyzed reactions continue to be discovered. Reports describing advances in understanding fundamental aspects of photobiology are always of interest. But, implications for treatment of neoplasia and other diseases are not always justified, especially when poorly penetrating wavelengths of light are employed, often at very high light doses. Efficacy is sometimes estimated by protocols that may not accurately measure photokilling. Many reports claiming potential clinical relevance for in vitro observations are based on a limited understanding of the determinants of clinical efficacy. The future of photodynamic therapy depends on an appreciation of what can be accomplished, especially when used with other modalities, but will also depend on the goals and interests of granting agencies, pharmaceutical groups, and clinical personnel. This commentary is intended to provide some thoughts on current research efforts, especially where clinical implications are suggested, hinted at or otherwise implied.  相似文献   

6.
The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by three different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community toward the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.  相似文献   

7.
Hydroxypyranoflavylium (HPF) cations are synthetic analogs possessing the same basic chromophore as the pyranoanthocyanins that form during the maturation of red wine. HPF cations absorb strongly in the visible spectral region, and most are fluorescent, triplet-sensitize singlet oxygen formation in solution and are strong photooxidants, properties that are desirable in a sensitizer for photodynamic therapy (PDT). The results of this study demonstrate that several simple HPF dyes can indeed function as PDT sensitizers. Of the eight HPF cations investigated in this work, four were phototoxic to a human cervical adenocarcinoma cell line (HeLa) at the 1–10 μmol dm−3 level, while only one of the eight compounds showed noticeable cytotoxicity in the dark. Neither a Type I nor a Type II mechanism can adequately rationalize the differences in phototoxicity of the compounds. Colocalization experiments with the most phototoxic compound demonstrated the affinity of the dye for both the mitochondria and lysosomes of HeLa cells. The fact that relatively modest structural differences, e.g., the exchange of an electron-donating substituent for an electron-withdrawing substituent, can cause profound differences in the phototoxicity, together with the relatively facile synthesis of substituted HPF cations, makes them interesting candidates for further evaluation as PDT sensitizers.  相似文献   

8.
Photodynamic therapy of cancer (PDT) is a therapeutic technique, minimally invasive, which is currently used to treat cancerous lesions and tumors that have been in the spotlight for its potential over the recent decades. Nonetheless, PDT still needs further development to become a first-option treatment for patients. This review compiles recent progress in several aspects of the current research in the constantly growing area of PDT to overcome the main challenges as an attempt to serve as a guide and reference for newcomers into this research area. This review has been prepared to highlight the use of chemical modifications on photosensitizers to improve their solubility, photostability, selectivity and phototoxicity. Additionally, the use of liposomes and cavitands as drug delivery systems to aid in the biodistribution and bioaccumulation of photosensitizers is presented. Also, the combination of PDT with chemotherapy or immunotherapy as an option to boost and improve treatment outcomes is discussed. Finally, the inhibition of antioxidant enzymes as a strategy for a synergistic effect to ameliorate the performance of the photosensitizers in PDT is presented as an alternative for future researchers.  相似文献   

9.
We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine-diones (X2–DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom-induced spin-orbit coupling (SOC) dynamics in the investigated X2–DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of 3O2 to 1O2 using X2–DPND correlates with the rate of triplet population, kISC >1.6 × 108 s−1 for I2–DPND vs kISC >2.9 × 109 s−1 for Cl2–DPND and Br2–DPND (where τISC = 343 ± 3 ps for I2–DPND and τISC = 5–6 ns for Cl2–DPND and Br2–DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom-induced SOC in Cl2–DPND and Br2–DPND did not lead to a reduction of the corresponding fluorescence (ca 75% vs 67% for the parent DPND). The attractive photophysical characteristics of Cl2/Br2–DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.  相似文献   

10.
Mesoporous silica-based nanoparticles are generally accepted as a potential platform for drug loading with a lot of advantages, except for their complex purification procedures and structures that are difficult to decompose. In this work, biocompatible hyperbranched polyglycerol is introduced to synthesize mesoporous silica nanoparticles (MSNs). The materials possess good biocompatibility, controlled release, and biodegradability. They also show passive targeting capability through the enhanced permeability and retention effect and can be excreted from the biological system. The method avoids the needs to employ traditional surfactants and complicated purified procedures, which make these MSNs an efficient delivery system for cancer therapy.  相似文献   

11.
We previously showed that a combination of differentiation-inducing agents (5-fluorouracil [5FU], vitamin D3 or methotrexate) and aminolevulinate-based photodynamic therapy (PDT) improves clinical responses by enhancing protoporphyrin IX (PpIX) photosensitizer levels and cell death. Here, we show that in addition to its previously known effects, 5FU enhances PDT-induced tumor-regressing immunity. Murine actinic keratoses were treated with topical 5FU or vehicle for 3 days prior to aminolevulinic acid application, followed by blue light illumination (~417 nm). Lesions were harvested for time-course analyses of innate immune cell recruitment into lesions, i.e. neutrophils (Ly6G+) and macrophages (F4/80+), which peaked at 72 h and 1 week post-PDT, respectively, and were greater in 5FU-treated lesions. Enhanced infiltration of activated T cells (CD3+) throughout the time course, and of cytotoxic T cells (CD8+) at 1–2 weeks post-PDT, also occurred in 5FU-treated lesions. 5FU pretreatment reduced the presence of cells expressing the immune checkpoint marker PD-1 at ~72 h post-PDT, favoring cytotoxic T cell activity. A combination of 5FU and PDT, each individually known to induce long-term tumor-targeting immune responses in addition to their more immediate effects on cancer cells, may synergize to provide better management of squamous precancers.  相似文献   

12.
Silver nanoparticles (Ag-NP) on silica were produced in aqueous solution by deposition of silver on colloidal silica in a small cuvette using radiation from a xenon-mercury lamp. Ag-NP were also synthesized on a much larger scale with low-level, long-term visible light irradiation for several months. In both cases, the nanoparticle production was monitored by the appearance of the surface plasmon resonance (SPR) band at around 410 nm. The growth of the nanoparticles was directly related to the time exposed to radiation, which could be tracked spectrophotometrically over time. We also investigated the possibilities of rapid nanoparticle production without the assistance of radiation though silver oxide by adding alkali hydroxide, which is a relatively unexplored approach for syntheses of Ag-NP on silica. The SPR absorption of Ag-NP was used as a tool in evaluating the size and shape of the resulting nanoparticles along with dynamic light scattering and transmission electron microscopy data. In order to better utilize and understand Ag-NP, we present various ways to control their production through initial concentration adjustments, irradiation effects, gravitational fractionation, sonication and silver oxide formation.  相似文献   

13.
Janus gold nanostar–mesoporous silica nanoparticle ( AuNSt–MSNP ) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule ( 5 ), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-β-cyclodextrin supramolecular gatekeepers ( N 1 ). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.  相似文献   

14.
As a reactive hydrogen species, the hydrogen radical (H⋅) scarcely sees applications in tumor biological therapy due to the very limited bio-friendly sources of H⋅. In this work, we report that TAF can act as an organic photosensitizer as well as an efficient photocatalytic H⋅ generator with reduced glutathione (GSH) as a fuel. The photoactivation of TAF leads to cell death in two ways including triple amplification of oxidative stress via ferroptosis-apoptosis under normoxia and apoptosis through biological reductions under hypoxia. TAF presents excellent biosafety with ultrahigh photocytotoxicity index at an order of magnitude of 102–103 on both normoxic and hypoxic cells. The in vitro data suggest that H⋅ therapy is promising to overcome the challenge of tumor hypoxia at low doses of both photocatalyst and light. In addition, the capability of near-infrared two-photon excitation would benefit broad biological applications.  相似文献   

15.
In the continuous search for multimodal systems with combined diagnostic and therapeutic functions, several efforts have been made to develop multifunctional drug delivery systems. In this work, through a covalent approach, a new class of fluorinated poly(lactic-co-glycolic acid) co-polymers (F-PLGA) were designed that contain an increasing number of magnetically equivalent fluorine atoms. In particular, two novel compounds, F3-PLGA and F9-PLGA, were synthesized and their chemical structure and thermal stability were analyzed by solution NMR, DSC, and TGA. The obtained F-PLGA compounds were proven to form in aqueous solution colloidal stable nanoparticles (NPs) displaying a strong 19F NMR signal. The fluorinated NPs also showed an enhanced ability to load hydrophobic drugs containing fluorine atoms compared to analogous pristine PLGA NPs. Preliminary in vitro studies showed high cell viability and the NP ability to intracellularly deliver and release a functioning drug.  相似文献   

16.
Photodynamic therapy (PDT) has been used to treat malignant pleural mesothelioma. Current practice involves delivering light to a prescribed light fluence with a point source, monitored by eight isotropic detectors inside the pleural cavity. An infrared (IR) navigation system was used to track the location of the point source throughout the treatment. The recorded data were used to reconstruct the pleural cavity and calculate the light fluence to the whole cavity. An automatic algorithm was developed recently to calculate the detector positions based on recorded data within an hour. This algorithm was applied to patient case studies and the calculated results were compared to the measured positions, with an average difference of 2.5 cm. Calculated light fluence at calculated positions were compared to measured values. The differences between the calculated and measured light fluence were within 14% for all cases, with a fixed scattering constant and a dual correction method. Fluence-surface histogram (FSH) was calculated for photofrin-mediated PDT to be able to cover 80% of pleural surface area to 50 J cm−2(83.3% of 60 J cm−2). The study demonstrates that it will be possible to eliminate the manual measurement of the detector positions, reducing the patient's time under anesthesia.  相似文献   

17.
Daylight activation for photodynamic therapy (PDT) of skin lesions is now widely adopted in many countries as a less painful and equally effective treatment mechanism, as compared to red or blue light activation. However, seasonal daylight availability and transient weather conditions complicate light dose estimations. A method is presented for dose planning without placing a large burden on clinical staff, by limiting spectral measurements to a one-time site assessment, and then using automatically acquired weather reports to track transient conditions. The site assessment tools are used to identify appropriate treatment locations for the annual and daily variations in sunlight exposure for clinical center planning. The spectral information collected from the site assessment can then be integrated with real-time daily electronic weather data. It was shown that a directly measured light exposure has strong correlation (R2: 0.87) with both satellite cloud coverage data and UV index, suggesting that the automated weather indexes can be surrogates for daylight PDT optical dose. These updated inputs can be used in a dose-planning treatment model to estimate photodynamic dose at depth in tissue. A simple standardized method for estimating light dose during daylight-PDT could help improve intersite reproducibility while minimizing treatment times.  相似文献   

18.
Herein, we report the design and synthesis of a mitochondria-specific, 808 nm NIR light-activated photodynamic therapy (PDT) system based on the combination of metal–organic frameworks (MOFs) and upconversion photochemistry with an organelle-targeting strategy. The system was synthesized through the growth of a porphyrinic MOF on Nd3+-sensitized upconversion nanoparticles to achieve Janus nanostructures with further asymmetric functionalization of the surface of the MOF domain. The PDT nanoplatform allows for photosensitizing with 808 nm NIR light, which could effectively avoid the laser-irradiation-induced overheating effect. Furthermore, mitochondria-targeting could amplify PDT efficacy through the depolarization of the mitochondrial membrane and the initiation of intrinsic apoptotic pathway. This work sheds light on the hybrid engineering of MOFs to combat their current limitations for PDT.  相似文献   

19.
Abstract

Comb‐like polystyrene grafted silica nanoparticles (c‐PS‐SNs) were prepared by the following steps: (a) methacryloxypropyl silica nanoparticles (MPSNs) were used as macromonomer and free radical copolymerized with 4‐vinyl benzyl chloride (VBC) by a solution polymerization method; (b) the product of (A), poly(4‐vinyl benzyl chloride) grafted silica nanoparticle (PVBC‐SN) was separated and then used as a macroinitiator for the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of styrene catalyzed by the complex of Cu(I)Br and 2,2′‐bipyridyl (bipy) in toluene solutions. The structurally well‐defined polymer chains were grown from the nanoparticle surfaces to yield particles composed of a silica core and a well defined, densely grafted outer comb‐like PS layer. A percentage of grafting (PG%) (the weight ratio of the PS grafted with that of the silica charged) of more than 80% was achieved after a polymerizing time of 5?hr.  相似文献   

20.
A G 4.0 dendrimer-like poly (amido amine) (PAMAM) based on silica nanoparticles was fabricated via a divergent approach.It was built from γ-aminopropyi silica nanoparfides (APSN) core via repetitive addition of acrylate (MA) and hexylenediamine (HDA). FT-IR and EA were used to monitor the progress of dendrimer during each step. The amino group content of the resulting product increased from 0.49 to 3.72 mmol/g after the 4th generation. In addition, the percentage of grafting increased with increasing generation and reached to 65.9% after 4th generation. It was found that the resulting silica nanoparticles could be dispersed in methanol with a mean hydrodynamic particle diameter of 152.7 nm although the silica nanoparticles had agglomerated during the storage period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号