首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 14 毫秒
1.
The ultrasound-assisted simultaneous adsorption of brilliant green (BG) and malachite green (MG) onto Mn-doped Fe3O4 nanoparticle-loaded activated carbon (Mn-Fe3O4-NP-AC) as a novel adsorbent was investigated and analyzed using first derivative spectrophotometry. The adsorbent was characterized using FT-IR, FE-SEM, EDX and XRD. Plackett–Burman design was applied to reduce the total number of experiments and to optimize the ultrasound-assisted simultaneous adsorption procedure, where pH, adsorbent mass and sonication time (among six tested variables) were identified as the most significant factors. The effects of significant variables were further evaluated by a central composite design under response surface methodology. The significance of independent variables and their interactions was investigated by means of the analysis of variance (ANOVA) within 95% confidence level together with Pareto chart. Using this statistical tool, the optimized ultrasound-assisted simultaneous removal of basic dyes was obtained at 7.0, 0.02 g, 3 min for pH, adsorbent mass, and ultrasonication time, respectively. The maximum values of BG and MG uptake under these experimental conditions were found to be 99.50 and 99.00%, respectively. The adsorption process was found to be followed by the Langmuir isotherm and pseudo-second order model using equilibrium and kinetic studies, respectively. According to Langmuir isotherm model, the maximum adsorption capacities of the adsorbent were obtained to be 101.215 and 87.566 mg g−1 for MG and BG, respectively. The value of apparent energy of adsorption obtained from non-linear Dubinin–Radushkevich model (4.348 and 4.337 kJ mol−1 for MG and BG, respectively) suggested the physical adsorption of the dyes. The studies on the well regenerability of the adsorbent in addition to its high adsorption capacity make it promising for such adsorption applications.  相似文献   

2.
A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0–10.0), BCG concentration (4–20 mg L−1), EY concentration (3–23 mg L−1), adsorbent dosage (0.01–0.03 g), sonication time (1–5 min) and centrifuge time (2–6 min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9 mg L−1, 10 mg L−1, 0.02 g, 4 and 4 min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73 mg g−1 of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion.  相似文献   

3.
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L−1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g−1 for SY, 74.6 mg g−1 for MG and 72.9 mg g−1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model.  相似文献   

4.
This study is devoted to preparation of novel solid lipid nanoparticles (SLNs) for the encapsulation of curcumin which is produced by micro-emulsion and ultrasonication using stearic acid and tripalmitin as solid lipids, tween80 and span80 as surfactants. The relation between particle size and entrapment efficiency of the produced SLNs was operated by central composite design (CCD) under response likes surface method (RSM). The variables including the ratio of lipids (X1), the ratio of surfactants (X2), drug/lipid ratio (X3), time of sonication (X4) and time of homogenization (X5). Particle size and entrapment efficiency of the loaded curcumin was justified according to the minimum particle size and maximum entrapment efficiency. The curcumin loaded SLNs presented fairly spherical shape with the mean diameter and entrapment efficiency of 112.0 ± 2.6 nm and 98.7 ± 0.3%, respectively. The optimized SLNs were characterized by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS) and field emission scanning electron microscopy (FESEM). The drug release profile of the optimal formulated material was examined in aqueous media and almost 30% of the curcumin loaded in SLNs was gradually released during 48 h, which reveals efficient prolonged release of the drug.  相似文献   

5.
The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV–Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0–33.0 mg L−1), pH (4.0–10.0), extent of adsorbent (0.08–0.12 g) and sonication time (4.0–8.0 min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57% ± 1.34 and 98.70% ± 2.01, respectively was achieved pH of 7.0, 0.11 g adsorbent, 14 and 28 mg L−1 of MB and JSB concentration respectively and 8 min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01 mg g−1 respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号