首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
For bipartite graphs G1,G2,,Gk, the bipartite Ramsey number b(G1,G2,,Gk) is the least positive integer b so that any coloring of the edges of Kb,b with k colors will result in a copy of Gi in the ith color for some i. In this paper, our main focus will be to bound the following numbers: b(C2t1,C2t2) and b(C2t1,C2t2,C2t3) for all ti3,b(C2t1,C2t2,C2t3,C2t4) for 3ti9, and b(C2t1,C2t2,C2t3,C2t4,C2t5) for 3ti5. Furthermore, we will also show that these mentioned bounds are generally better than the bounds obtained by using the best known Zarankiewicz-type result.  相似文献   

3.
4.
5.
Let k be a field of characteristic different from 2 and 3. In this paper we study connected simple algebraic groups of type A2, G2 and F4 defined over k, via their rank-2 k-tori. Simple, simply connected groups of type A2 play a pivotal role in the study of exceptional groups and this aspect is brought out by the results in this paper. We refer to tori, which are maximal tori of An type groups, as unitary tori. We discuss conditions necessary for a rank-2 unitary k-torus to embed in simple k-groups of type A2, G2 and F4 in terms of the mod-2 Galois cohomological invariants attached with these groups. The results in this paper and our earlier paper ([6]) show that the mod-2 invariants of groups of type G2,F4 and A2 are controlled by their k-subgroups of type A1 and A2 as well as the unitary k-tori embedded in them.  相似文献   

6.
7.
An edge-coloured graph G is called properly connected if any two vertices are connected by a path whose edges are properly coloured. The proper connection number of a connected graph G, denoted by pc(G), is the smallest number of colours that are needed in order to make G properly connected. Our main result is the following: Let G be a connected graph of order n and k2. If |E(G)|n?k?12+k+2, then pc(G)k except when k=2 and G{G1,G2}, where G1=K1(2K1+K2) and G2=K1(K1+2K2).  相似文献   

8.
9.
10.
11.
12.
13.
Let G be a finite group, written multiplicatively. The Davenport constant of G is the smallest positive integer D(G) such that every sequence of G with D(G) elements has a non-empty subsequence with product 1. Let D2n be the Dihedral Group of order 2n and Q4n be the Dicyclic Group of order 4n. Zhuang and Gao (2005) showed that D(D2n)=n+1 and Bass (2007) showed that D(Q4n)=2n+1. In this paper, we give explicit characterizations of all sequences S of G such that |S|=D(G)?1 and S is free of subsequences whose product is 1, where G is equal to D2n or Q4n for some n.  相似文献   

14.
15.
16.
17.
Let G be a 2-regular graph with 2m+1 vertices and assume that G has a strong vertex-magic total labeling. It is shown that the four graphs G2mC3, G(2m+2)C3, GmC8 and G(m+1)C8 also have a strong vertex-magic total labeling. These theorems follow from a new use of carefully prescribed Kotzig arrays. To illustrate the power of this technique, we show how just three of these arrays, combined with known labelings for smaller 2-regular graphs, immediately provide strong vertex-magic total labelings for 68 different 2-regular graphs of order 49.  相似文献   

18.
19.
20.
The generalized Ramsey number R(G1,G2) is the smallest positive integer N such that any red–blue coloring of the edges of the complete graph KN either contains a red copy of G1 or a blue copy of G2. Let Cm denote a cycle of length m and Wn denote a wheel with n+1 vertices. In 2014, Zhang, Zhang and Chen determined many of the Ramsey numbers R(C2k+1,Wn) of odd cycles versus larger wheels, leaving open the particular case where n=2j is even and k<j<3k2. They conjectured that for these values of j and k, R(C2k+1,W2j)=4j+1. In 2015, Sanhueza-Matamala confirmed this conjecture asymptotically, showing that R(C2k+1,W2j)4j+334. In this paper, we prove the conjecture of Zhang, Zhang and Chen for almost all of the remaining cases. In particular, we prove that R(C2k+1,W2j)=4j+1 if j?k251, k<j<3k2, and j212299.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号