首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design, fabrication, and characterization of dielectric-loaded surface plasmon–polariton nanowave-guides on a gold film are presented. The nanostructures are produced by two-photon polymerization with femtosecond laser pulses, and the minimum ridge height is ∼170 nm. Leakage radiation microscopy shows that these surface plasmon–polariton waveguides are single mode with strong mode confinement at the wavelength of 830 nm. The experimental results are in good agreement with the simulation by the effective-index method.  相似文献   

2.
The charge–storage properties of Ge nanocrystal (Nc) memory devices with MOS structure have been studied. The Ge nanocrystals (Ncs) were prepared on a p-Si (100) matrix by means of pulsed laser deposition (PLD) combined with rapid annealing in the presence of Ar gas. The device is characteristic of better switching characteristics (the I on/I off>105), low leakage current, which was attributed to the effect of Coulomb blockade preventing injection. A significant threshold-voltage shift of 0.85 V was observed when an operating voltage of 5 V was implemented on the device. The kind of hysteresis behavior in the double sweep suggests that the device has a good electrostatic control over the Ge Nc channel.  相似文献   

3.
The feasibility of enhancing thermal conductivity of Al–4Cu–1Mg alloy by depositing 80Cu–20Mo coating using high-power lasers has been examined. Coatings of 667±2.5 μm thickness were formed with metallurgically sound interface. Results showed an 86% increase in the thermal conductivity of Al–4Cu–1Mg alloy due to laser-deposited 80Cu–20Mo alloy coating. This coating approach can potentially be used on low coefficient of thermal expansion metal matrix composites to enhance their thermal conductivity in electronic devices.  相似文献   

4.
Octyl β-D-glucopyranoside (OGP) has been reported to completely inhibit cavitation-induced cell lysis in vitro, possibly by quenching critical free-radical effects. In this study, the influence of OGP on cell lysis in a 60 rpm rotating-tube exposure apparatus was assessed. HL-60 cell lysis was estimated with a Coulter Multisizer counter. Cavitation activity from the 2.3 MHz, 30 s duration exposures were monitored at the 1.15 MHz subharmonic. Cavitation nucleation was accomplished by addition of an ultrasound contrast agent, or by using freshly dissolved culture media. For both nucleation methods, exposures were conducted for 0-0.7 MPa peak rarefactional pressure-amplitudes with and without 5 mM OGP, and for 0.5 MPa with 0-5 mM OGP. The addition of OGP to the cell suspension medium generally had little influence on cavitation-induced cell lysis. Exposures with no rotation had reduced subharmonic and lysis for added contrast agent, but essentially no cavitation for the fresh medium. Since the decreases or increases in cell lysis found for added OGP generally were accounted for by concomitant decreases or increases in cavitation activity, the changes in cell lysis could be explained by variation of the mechanical effects of cavitation without invoking a critical role for free-radical effects.  相似文献   

5.
田晓华  隋解和  张欣  冯雪  蔡伟 《中国物理 B》2011,20(4):47503-047503
The microstructural,phase transformation and magnetic properties of Ni-Mn-Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed sintered specimens exhibit typical martensitic transformation behaviours. The martensite of the sintered specimen after annealing exhibits a ferromagnetic nature. Moreover,study of the fracture surface indicates that the transgranular fracture contributes to the higher ductility of sintered Ni-Mn-Ga alloy. In addition,the transformation strain in sintered Ni-Mn-Ga alloy is studied for the first time.  相似文献   

6.
The present study demonstrates ultrasound-induced cell injury using a nickel–titanium dioxide (Ni–TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni–TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm2 for 30 s led to an increased generation of hydroxyl (OH) radicals compared to nickel–titanium (Ni–Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni–TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm2 for 30 s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni–Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni–TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni–TiO2 alloy plates, indicating induction of apoptosis.  相似文献   

7.
The α-Cr2O3 single-crystal nanocondensates were fabricated by pulsed laser ablation in air and characterized by analytical electron microscopy regarding shape-dependent local internal stress of the anisotropic crystal. The nanocondensates formed predominantly as rhombohedra with well-developed surfaces and occasionally hexagonal plate with thin edges and blunt corners. Such nanocondensates showed Raman shift for the CrO6 polyhedra, indicating a local compressive stress up to ca. 4 GPa on the average. Careful analysis of the lattice fringes revealed a local compressive stress (0.5% strain) at the thin edge of the hexagonal plates and a local tensile stress (0.3–1.0% strain) near the relaxed , , and (0 0 0 1) surfaces of truncated rhombohedra. The combined effects of nanosize, capillarity force at sharp edge, and specific surface relaxation account for the retention of a local internal compressive stress built up in an anisotropic crystal during a very rapid heating–cooling process.  相似文献   

8.
Coarse, rod-shaped precipitates growing along ?100?Al directions in an Al–1.0?wt% Mg2Si alloy with 0.5?wt% Ag additions were investigated by high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). All investigated precipitates had complex structures, being composed of domains separated by anti-phase resembling boundaries. The domains consist of a modified hexagonal β′-type structure that contains a considerable amount of Ag. Based on HAADF-STEM images, an average atomic model with space group P-62?m (189) and composition Al3Mg3Si2Ag is proposed, having Al incorporation and Ag replacing certain Si atomic columns. Co-existence with the Ag-free β′-Mg9Si5 phase has been observed for some precipitates. The boundaries may be described as full or half units of the orthorhombic U2-AlMgSi precipitate phase. The HAADF-STEM images indicate partial replacements of Al atoms by Ag, in both the β′-type domains and the U2-type boundaries. Ag enrichment of the Al matrix near the precipitate/Al interface was observed for all the investigated precipitates  相似文献   

9.
Oxide films obtained during anodization of Ti?40% Al sintered powder samples in fluorine-containing electrolytes are investigated. With scanning electron microscopy and X-ray phase analysis, it is demonstrated that an X-ray amorphous nanoporous anodic oxide film is formed on the surface of the powder microparticles under optimal anodization conditions. After annealing at T = 1093 K in air and vacuum (10?2 Pa), the oxide films are revealed to crystallize with its regular porous structure retained. The composition of the polycrystalline anodic-oxide films annealed in air is a mixture involving TiO2 (anatase and rutile) and α- and γ-Al2O3 phases and Ti2O3 and Al2TiO5 traces. The vacuum annealing process makes it possible to identify TiO2, in which anatase is the main phase, α- and γ-Al2O3, and Ti2O3 and TiO traces. However, rutile is not revealed. The presented results indicate that the application of the anodic nanostructuring of Ti?40% Al powders is promising for the obtainment of new photocatalytic active nanomaterials.  相似文献   

10.
In the specific applications of surface cleaning and electrochemistry which consist of processes implanting surface irradiation by ultrasound, design of large-scale devices requires us to understand acoustic field distribution together with its quantification. This observation allows systematic measurement of ultrasonic stirring throughout electrochemical determination of “equivalent” flow velocity versus various operating parameters (powers, electrode-horn distances, reactor geometry, frequencies, etc.). A numerical model was proposed to fit our curves and to identify some parameters by taking into account the characteristics of the ultrasonic wave (absorption coefficient, rate of cavitation bubbles and acoustic power). Nevertheless, the flicked behavior of the ultrasonic processes in the vicinity of the electrode as well as bubble presence which induce non-linearities in wave propagation lead us to propose a new approach based on parameter identification by methods currently used in chemical engineering. These parameters were related to physical criteria, and the global model was evaluated throughout analysis of its sensibility criteria.  相似文献   

11.
Yan Wang 《Applied Surface Science》2010,256(20):6107-2855
Scaffolds comprising hydroxyapatite (HAP) or poly(?-caprolactone)-grafted hydroxyapatite (g-HAP) and poly(?-caprolactone) (PCL) were prepared using the thermally induced phase separation/salt leaching technique. The g-HAP nanoparticles were evaluated by Fourier Transformation Infrared Spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Power X-ray Diffraction (XRD) patterns confirmed the successful grafting on the surface of HAP. The effects on mechanical strength, porosity and thermal property of scaffolds by the introduction of nanoparticles were extensively investigated. The compressive modulus of the scaffold was greatly improved by the addition of g-HAP nanoparticles. Especially the compressive modulus of the g-HAP/PCL scaffold containing 20 wt% of g-HAP was 59.4% higher than that of the corresponding HAP/PCL scaffold.  相似文献   

12.
Ion-plasma sputtering and the codeposition of Ta and W ultrafine particles is used to produce solid solutions in the entire concentration range of the Ta-W binary system in the form of alloy coatings. The formation of solid-solution alloys directly during the codeposition process confirms the theory of thermal-fluctuation melting of small particles and the coalescence of quasi-liquid clusters of subcritical size. During the formation of coatings based on Ta and W layers with a thickness less than 0.5 nm mutual dissolution of the components occurs. Starting at a concentration of 34 at % W in the alloy, tungsten atoms specify their own type of crystal-lattice symmetry. Apart from the formation of [beta]-tantalum and tungsten phases, an increase in the thickness of the tantalum and tungsten sublayers leads to the appearance of metal solid solutions, amorphous inclusions, and nanocluster superlattices of one metal in the matrix of another. At high tungsten concentrations a superstructure of tantalum nanoclusters is not observed in the coating. It is supposed that the size factor is the origin of superstructure formation.  相似文献   

13.
Single-phase semiconducting iron disilicide (β-FeSi2) films on silicon substrate were fabricated by electron beam evaporation (EBE) technique. For preventing the oxidation of Fe film, silicon/iron/silicon sandwich structure films with different thickness of silicon and iron were deposited and then annealed at different temperatures. X-ray diffraction (XRD), Raman and Fourier transform infrared spectroscopy (FTIR) measurements were carried out to study the phase distribution and crystal quality of the films. Single-phase β-FeSi2 with high crystal quality was achieved after annealing at 800 °C for 5 h. An apparent direct bandgap Eg of approximately 0.85-0.88 eV was observed in the β-FeSi2 films. It is considered that the silicon/iron/silicon sandwich structure is suited for formation of single-phase β-FeSi2 with high crystal quality.  相似文献   

14.
Thin films of titanium carbide and amorphous hydrogenated carbon have been synthesized on titanium aluminium alloy substrates by PSII assisted MW-ECRCVD with a mirror field. The microstructure, chemical composition and mechanical property were investigated. Using XPS and TEM, the films were identified to be a-C:H film containing TiC nanometre grains (namely, the so-called nanocomposite structure). The size of TiC grains of nanocomposite TiC/DLC film is about 5 nm. The nanocomposite structure has obvious improvement in the mechanical properties of DLC film. The hardness of a-C:H film with Ti is enhanced to 34 G Pa~ while that of a-C:H film without Ti is about 12 G Pa, and the coherent strength is also obviously enhanced at the critical load of about 35N.  相似文献   

15.
A new methodology has been established for identification of β-transus temperature in α + β and β titanium alloys by ultrasonic velocity measurements in a single specimen in one microstructural condition only. This methodology is based on a linear correlation obtained for the variation in β-transus temperature with ultrasonic longitudinal wave velocity in various titanium alloys specimens, β-heat-treated followed by water quenching. Furthermore, it has been demonstrated for the first time that ultrasonic velocity in α′ martensitic structure increases with the addition of α-stabilizing elements and decreases with the addition of β-stabilizing elements for α + β titanium-alloys.  相似文献   

16.
Using a new inner surface modification method named GEPSII (grid-enhanced plasma source ion implantation), which is designed for inner surface modification of tubular work pieces, we successfully produced polycrystalline TiN coating on 0.45% C steel (45^# steel) samples. Compared with the uncoated 45^# steel sample, the electrochemical corrosion test on the coated 45^# steel samples presents evident improvement in their corrosion resistance. Two implanted voltages, direct current (-2kV) and pulsed negative voltage (-10kV), are applied on the substrates. It is shown that the direct current implantation is more effective than the pulsed implantation in the surface corrosion resistance. AES depth profile shows that coating thickness is about tens of nanometres. The preferred orientations expressed by peaks at (111) and (200) can be seen clearly in XRD patterns.  相似文献   

17.
18.
The reorientation of a cholesteric liquid crystal with a large helical pitch induced by the electric field–driven modification of surface anchoring is investigated. In the initial state, the liquid crystal cell has a homeotropic alignment of the director. An applied dc electric field produced a twisted homeoplanar structure of the cholesteric.  相似文献   

19.
《Surface science》1990,231(3):L196-L200
β-SiC surfaces have been investigated in terms of surface composition and reconstruction by medium energy ion scattering (MEIS), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). A (3 × 2) phase is produced by evaporating Si on a β-SiC surface. Heat treatment at 1065°C causes consecutive transformation into (5 × 2), c(4 × 2), (2 × 1), (1 × 1) and c(2 × 2) phases. Quantitative analysis of MEIS spectra shows that the c(4 × 2) surface has a full silicon topmost layer, whereas the c(2 × 2) surface has a full carbon topmost layer. The (3 × 2) and (5 × 2) phases are believed to originate from additional Si dimer rows on top of a Si terminated crystal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号