首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25 mg L−1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240 s sonication time and 0.04, 0.03 and 0.032 g of Fe3O4-MNPs-AC. Replication of similar experiment (N = 5) guide that average removal percentage of SY, MB and EB were found to be 96.63 ± 2.86%, 98.12 ± 1.67% and 99.65 ± 1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00 mg g−1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.  相似文献   

2.
Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40–60 nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5–9.5), 0.010–0.028 g of adsorbent and 0.5–6.5 min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3–15 mg L−1. Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016 g adsorbent, 15 mg L−1 of both dyes 4 min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34 mg g−1 in single system and 95.69 and 102.99 mg g−1 in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate constant k2 in binary system larger than single system.  相似文献   

3.
A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0–10.0), BCG concentration (4–20 mg L−1), EY concentration (3–23 mg L−1), adsorbent dosage (0.01–0.03 g), sonication time (1–5 min) and centrifuge time (2–6 min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9 mg L−1, 10 mg L−1, 0.02 g, 4 and 4 min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73 mg g−1 of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion.  相似文献   

4.
Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019 g ZnO: Cr-NPs-AC, 3.9 min sonication at 4.5, 4.8 and 4.7 mg L−1 of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R2, adjusted and predicted R2 for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6 mg g−1 for MG, EY and AO, respectively.  相似文献   

5.
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L−1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g−1 for SY, 74.6 mg g−1 for MG and 72.9 mg g−1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model.  相似文献   

6.
Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L−1). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号