首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N,N′-diphenylbutyl-3,4,9,10-perylenebiscarboximide (PTCDI-C4Ph) were characterized by optical and electrochemical methods. A device with an ITO/PTCDI-C4Ph (≈2 μm)/Al structure was fabricated to measure mobility by time-of-flight techniques. This vacuum deposited organic layer was an amorphous state. Electrons were observed faster than holes. The electron and hole mobilities were 1.8 × 10−4 cm2/V s and 1.1 × 10−4 cm2/V s under the electric field of 500 (V/cm)1/2, respectively. This result shows that this organic compound is a good candidate for an n-type conduction.  相似文献   

2.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

3.
A pyrochlore-related Ce2Zr2O8−x phase has been prepared in a reduction reoxidation process from Ce0.5Zr0.5O2 powders. Ce2Zr2O8−x, based on a cubic symmetry with a=1.053 nm, decomposes in nitrogen at 800 °C, but remains stable up to 900 °C in air. It shows mixed oxygen ionic and electronic conductivity. The bulk conductivity at 700 °C is 4×10−4 S cm−1 in air and 1×10−2 S cm−1 in nitrogen, and the activation energy is 1.27 eV in air. In nitrogen, the Arrhenius law is not obeyed, and a curved plot was obtained from 400 to 700 °C; then, the conductivity decreased rapidly due to the thermal decomposition of Ce2Zr2O8−x.  相似文献   

4.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

5.
The use of focused ion beam implantation doping of an inverted GaAs/Al1−xGaxAs heterostructure during a growth interruption allows for the lateral modulation of the heterostructure doping. Hence, laterally patterned two dimensional electron gases (2DEGs) are obtained with no further processing steps required. We have performed the direct writing of a 2DEG with a Hall-bar pattern, such that only the application of ohmic contacts was necessary and the sample surface remained unharmed otherwise. The 2DEG has an electron density of 3.6×1011 cm−2 and an electron mobility of 4.8×105 cm2/V s, as determined by magnetotransport measurements. A conventional mesa-etched Hall-bar with almost identical electronic properties has also been studied. Different behaviour of the longitudinal as well as the transversal magnetoresistance for the two Hall-bars is observed and can be concluded to be due to a different confinement potential.  相似文献   

6.
Preparation and physical properties of p- and n-InMnSb epitaxial films with Mn contents up to 10% were studied with the aim of seeking phenomena induced by the spin exchange interaction between carrier and Mn spins. For p-type samples with Mneff=4.5×1020 and p=1.1×1020 cm−3, carrier-induced ferromagnetic order with a Curie temperature of 20 K was observed. The sign of the anomalous Hall coefficient is found to be negative. Tellurium-doped n-type samples (n=8.6×1018 cm−3) with net Mn contents of 10% are found to be paramagnetic.  相似文献   

7.
For the first time, research on the unique galvanomagnetic properties of the hole gas in the channels of selectively doped CVD Ge-Ge1−XSiX (X≤0, 2) superlattices with strained Ge layers was carried out. We have obtained a high value of the hole mobility 1.5 × 104 cm2/V s (T = 4, 2 K) at a hole concentrations of (1–5) × 1017 cm−3 in SLs channels. It is shown that the main contribution into the longitudinal conductivity of strained Ge-Ge1−XSiX SL due to light hole band splitting under the strains in Ge layers.  相似文献   

8.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

9.
Low resistance nonalloyed Al-based ohmic contacts on n-ZnO:Al   总被引:1,自引:0,他引:1  
We have investigated the electrical properties of nonalloyed Al, Al/Au, and Al/Pt ohmic contacts on n-type ZnO:Al (2×1018 cm−3). All Al-based nonalloyed ohmic contacts on the n-ZnO:Al reveal linear current–voltage behavior with low specific contact resistivity of 8.5×10−4 (Al), 8.0×10−5 (Al/Au) and 1.2×10−5 Ω cm2 (Al/Pt), respectively. Using secondary ion mass spectroscopy (SIMS) and x-ray photoelectron spectroscopy (XPS) depth profiles, it was found that the O atoms in the ZnO:Al layer outdiffused to Al metal layer while the Al atoms indiffused to the surface region of ZnO:Al. This interdiffusion between Al and O atoms at room temperature results in an increase of doping concentration in the surface region of the ZnO:Al and reduces a specific contact resistivity of the Al-based ohmic contacts without thermal annealing process.  相似文献   

10.
The 2ν3(A1) band of 12CD3F near 5.06 μm has been recorded with a resolution of 20–24 × 10−3 cm−1. The value of the parameter (αB − αA) for this band was found to be very small and, therefore, the K structure of the R(J) and P(J) manifolds was unresolved for J < 15 and only partially resolved for larger J values. The band was analyzed using standard techniques and values for the following constants determined: ν0 = 1977.178(3) cm−1, B″ = 0.68216(9) cm−1, DJ = 1.10(30) × 10−6 cm−1, αB = (B″ − B′) = 3.086(7) × 10−3 cm−1, and βJ = (DJDJ) = −3.24(11) × 10−7 cm−1. A value of αA = (A″ − A′) = 2.90(5) × 10−3 cm−1 has been obtained through band contour simulations of the R(J) and P(J) multiplets.  相似文献   

11.
Several elementary reactions of formyl radical of combustion importance were studied using pulsed laser photolysis coupled to transient UV–Vis absorption spectroscopy: HCO → H + CO (1), HCO + HCO → products (2), and HCO + CH3 → products (3). One-pass UV absorption, multi-pass UV absorption as well as cavity ring-down spectroscopy in the red spectral region were used to monitor temporal profiles of HCO radical. Reaction (1) was studied over the buffer gas (He) pressure range 0.8–100 bar and the temperature range 498–769 K. Reactions (2a), (2b), (2c), (3a) and (3b) as well as the UV absorption spectrum of HCO, were studied at 298 and 588 K, and the buffer gas (He) pressure of 1 bar. Pulsed laser photolysis (308, 320, and 193 nm) of acetaldehyde, propionaldehyde, and acetone was used to prepare mixtures of free radicals. The second-order rate constant of reaction (1) obtained from the data at 1 bar is: k1(He) = (0.8 ± 0.4) × 10−10exp(−(66.0 ± 3.4) kJ mol−1/RT) cm3 molecule−1 s−1. The HCO dissociation rate constants measured in this work are lower than those reported in the previous direct work. The difference is a factor of 2.2 at the highest temperature of the experiments and a factor of 3.5 at the low end. The experimental data indicate pressure dependence of the rate constant of dissociation of formyl radical 1, which was attributed to the early pressure fall-off expected based on the theory of isolated resonances. The UV absorption spectrum of HCO was revised. The maximum absorption cross-section of HCO is (7.3 ± 1.2) × 10−18 cm2 molecule−1 at 230 nm (temperature independent within the experimental error). The measured rate constants for reactions (2a), (2b), (2c), (3a) and (3b) are: k2 = (3.6 ± 0.8) × 10−11 cm3 molecule−1 s−1 (298 K); k3 = (9.3 ± 2.3) × 10−11 cm3 molecule−1 s−1(298 and 588 K).  相似文献   

12.
Well-ordered nanoporous alumina templates were fabricated by two-step anodization method by applying a constant voltage of 40 V in oxalic acid solution or of 25 V in sulfuric acid solution. The cylindrical pore diameter and pore density of the templates utilized for the carbon nanotube (CNT) growth were 86 ± 5 nm and 1.2 × 1010 cm−2 in oxalic acid solution and 53 ± 1 nm and 3.1 × 1010 cm−2 in sulfuric acid solution, respectively. The CNTs with uniform diameter of 50 ± 10 nm (oxalic acid) and 44 ± 2 nm (sulfuric acid) were grown on the porous alumina template as electrode materials for the electrochemical double layer capacitor (EDLC). The EDLC characteristics were examined by measuring the capacitances from cyclic voltammograms and the charge–discharge curves. The specific capacitances of the CNT electrodes are 30 ± 1 F/g (Φ = 50 ± 10 nm) and 121 ± 5 F/g (Φ = 44 ± 2 nm). The high specific capacitance of the CNT electrode was achieved by using nanoporous alumina templates with the high pore density and the small and uniform pore diameter.  相似文献   

13.
TheY2Σ+–X2Πinear-infrared electronic transition of CuO was observed at high resolution for the first time. The spectrum was recorded with the Fourier transform spectrometer associated with the McMath–Pierce Solar Telescope at Kitt Peak. The excited CuO molecules were produced in a low pressure copper hollow cathode sputter with a slow flow of oxygen. Constants for theY2Σ+states of CuO are:T0= 7715.47765(54) cm−1,B= 0.4735780(28) cm−1,D= 0.822(12) × 10−6cm−1,H= 0.46(10) × 10−10cm−1, γ = −0.089587(42) cm−1, γD= 0.1272(79) × 10−6cm−1,bF= 0.12347(22) cm−1, andc= 0.0550(74) cm−1. ImprovedX2Πiconstants are also presented.  相似文献   

14.
The ν3±1 perpendicular band of 14NF3 ( cm−1) has been studied with a resolution of 2.5 × 10−3 cm−1, and 3682 infrared (IR) transitions (Jmax=55, Kmax=45) have been assigned. These transitions were complemented by 183 millimeterwave (MMW) rotational lines (Jmax=25, Kmax=19) in the 150–550 GHz region (precision 50–100 kHz). The kl=+1 level reveals a strong A1/A2 splitting due to the l(2,2) rotational interaction (q=−4.05 × 10−3 cm−1) while the kl=−2 and +4 levels exhibit small A1/A2 splittings due to l(2,−4) and l(0,6) rotational interactions. All these splittings were observed by both experimental methods. Assuming the v3=1 vibrational state as isolated, a Hamiltonian model of interactions in the D reduction, with l(2,−1) rotational interaction (r=−1.96 × 10−4 cm−1) added, accounted for the observations. A set of 26 molecular constants reproduced the IR observations with σIR=0.175 × 10−3 cm−1 and the MMW data with σMMW=134 kHz. The Q reduction was also performed and found of comparable quality while the QD reduction behaved poorly. This may be explained by a predicted Coriolis interaction between v3=1 and v1=1 (A1, 1032.001 cm−1) which induces a slow convergence of the Hamiltonian in the QD reduction but has no major influence on the other reductions. The experimental equilibrium structure could be calculated as: re(N–F)=1.3676 Å and (FNF)=101.84°.  相似文献   

15.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

16.
Unsuccessful attempts were made to prepare LixMo6S7.7 by direct ionic exchange of Cu2Mo6S7.7 using aqueous, acetontrille, and molten salt solvents. Li2.3Mo6S7.7 was eventually prepared by lithiation of Mo6S8 using n-butyl lithium reagent. The mass transport properties of hot-pressed samples were measured using a four-point dc technique and the following values at 415°C for the lithium ionic conductivity, .4×10−4 (ohms cm−1) and lithium chemical diffusion coefficient 3.5×10−7 cm2/s, were derived. A possible explanation for the relatively low lithium ion mobility in Li2.3Mo6S7.7 is discussed.  相似文献   

17.
The structural properties of a 10 μm thick In-face InN film, grown on Al2O3 (0001) by radio-frequency plasma-assisted molecular beam epitaxy, were investigated by transmission electron microscopy and high resolution x-ray diffraction. Electron microscopy revealed the presence of threading dislocations of edge, screw and mixed type, and the absence of planar defects. The dislocation density near the InN/sapphire interface was 1.55×1010 cm−2, 4.82×108 cm−2 and 1.69×109 cm−2 for the edge, screw and mixed dislocation types, respectively. Towards the free surface of InN, the density of edge and mixed type dislocations decreased to 4.35×109 cm−2 and 1.20×109 cm−2, respectively, while the density of screw dislocations remained constant. Using x-ray diffraction, dislocations with screw component were found to be 1.2×109 cm−2, in good agreement with the electron microscopy results. Comparing electron microscopy results with x-ray diffraction ones, it is suggested that pure edge dislocations are neither completely randomly distributed nor completely piled up in grain boundaries within the InN film.  相似文献   

18.
Single-crystal ZnO has been hydrothermally grown with additional In2O3 in the solution. Schottky barrier contacts have been deposited by electron beam evaporation of Pd onto the face. Capacitance–voltage measurements have been performed to reveal the carrier concentration as a function of the In2O3 content in the solution, and secondary-ion mass spectrometry was used to measure the resulting In concentration in the samples. For an In2O3 content of 2×1019 cm−3, the average free electron concentration increased to 5×1018 cm−3 compared to 4×1017 cm−3 for the non-doped material. An increase of the In2O3 content to 4×1019 cm−3 leads to a measured carrier concentration of approximately 1×1019 cm−3; however, only up to a quarter of the incorporated In became electrically active. From thermal admittance spectroscopy measurements two prominent electronic levels are found, and compared with to the non-doped material case, the freeze-out of the shallow doping in the In-doped samples takes place at lower temperatures (below 80 K).  相似文献   

19.
Focused ion beam implantation of gallium and dysprosium was used to locally insulate the near-surface two-dimensional electron gas of AlxGa1−xN/GaN heterostructures. The threshold dose for insulation was determined to be 2×1010 cm−1 for 90 keV Ga+ and 1×109 cm−1 for 200 keV Dy2+ at 4.2 K. This offers a tool not only for inter-device insulation but also for direct device fabrication. Making use of “open-T” like insulating line patterns, in-plane gate transistors have been fabricated by focused ion beam implantation. An exemplar with a geometrical channel width of 1.5 μm shows a conductance of 32 μS at 0 V gate voltage and a transconductance of around 4 μS, which is only slightly dependent on the gate voltage.  相似文献   

20.
The influence of P ion doping on the photoluminescence (PL) of the system of nanocrystals in SiO2 matrix (SiO2:Si) both without annealing and after annealing at various temperatures (provided before and after additional P implantation) is investigated. The Si and P implantation was carried out with ion energies of 150 keV and doses ΦSi=1017 cm−2 and ΦP=(0.1–300)×1014 cm−2 (current density j3 μAcm−2). The system after Si implantation was formed at 1000°C and 1100°C (2 h). For the case of SiO2:Si system as-implanted by P, the intensity of PL was drastically quenched, but partially retained. As for the step-by-step annealing (at progressively increased temperatures) carried out after P implantation, the sign and degree of doping effect change with annealing temperature. The possible mechanisms of these features are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号