首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王秀荣  南照东  谭志诚 《中国化学》2006,24(10):1301-1304
Molar heat capacities of the pure samples of acetone,methanol and the azeotropic mixture composed of acetone,cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K.The solid-solid andsolid-liquid phase transitions of the pure samples and the mixture were determined based on the curve of the heatcapacity with respect to temperature.The phase transitions took place at(126.16±0.68)and(178.96±1.47)K forthe sample of acetone,(157.79±0.95)and(175.93±0.95)K for methanol,which were corresponding to thesolid-solid and the solid-liquid phase transitions of the acetone and the methanol,respectively.And the phase tran-sitions occurred in the temperature ranges of 120 to 190 K and 278 to 280 K corresponding to the solid-solid andthe solid-liquid phase transitions of mixture of acetone,cyclohexane and methanol,respectively.The thermody-namic functions and the excess thermodynamic functions of the mixture relative to standard temperature of 298.15K were derived based on the relationships of the thermodynamic functions and the function of the measured heatcapacity with respect to temperature.  相似文献   

2.
南照东  谭志诚  邢军 《中国化学》2005,23(7):823-828
The molar heat capacity of the azeotropic mixture composed of ethanol and toluene was measured by a high precision adiabatic calorimeter from 80 to 320 K. The glass transition and phase transitions of the azeotropic mixture were determined based on the heat capacity measurements. A glass transition at 103.350 K was found. A solid-solid phase transition at 127.282 K, two solid-liquid phase transitions at 153.612 and 160.584 K were observed, which correspond to the transition of metastable crystal to stable crystal of ethanol and the melting of ethanol and toluene, respectively. The thermodynamic functions and the excess ones of the mixture relative to the standard temperature 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

3.
The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adiabatic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

4.
郭洪臣  张宝珠 《分子催化》2012,26(6):546-553
对甲醇制烃反应体系进行了热力学分析,计算了不同温度下各反应的焓变、吉布斯自由能变和反应平衡常数,采用平衡常数联立方程法估算了甲醇转化生成C2-C10烃的热力学平衡组成.计算结果表明:甲醇制烃为强放热反应,1 mol甲醇转化最大放热量约为90 kJ/mol;甲醇制烃体系中除甲醇脱水之外,大部分反应均可视为不可逆过程;高温低压不利于烷烃生成物,有利于芳烃和烯烃生成物.对计算结果与实验结果进行了比较,数据变化趋势较为一致.计算结果表明,甲醇制烃体系不受热力学的控制,催化剂的选择和反应条件的选择至关重要.  相似文献   

5.
Excess enthalpies, excess heat capacities, excess volumes and sound velocities of the mixture of dioxane isomers, 1,3-dioxane and 1,4-dioxane, were measured. One of the isomers, 1,4-dioxane is considered as non-polar liquid and the other as polar liquid. Excess enthalpies are positive and small, less than 55 J mol-1. Excess heat capacities are also very small and the curve is W-shaped, and the values are from 0.03 to -0.08 J mol-1 K-1. Excess volumes and excess isentropic compressibilities are small and positive, and less than 0.03 cm3 mol-1 and 0.8 TPa-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
南照东  谭志诚  邢军 《中国化学》2005,23(10):1297-1302
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were estabhshed for the azeotropic mixture. A glass transition was observed at (111.9±1.2) K. The phase transitions took place at (179.26±0.77) and (269.69±0.14) K corresponding to the solid-hquid phase transitions of n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was estabhshed, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.  相似文献   

7.
曾红艳  段正康  罗爱文  曾志丁 《色谱》2010,28(10):955-958
建立了一种同时检测乙烯酮-丙酮法制乙酰丙酮反应液中乙酰丙酮和丙酮的高效液相色谱法(HPLC)。采用Agilent Eclipse XDB-C18色谱柱,以四氢呋喃-水(15:85, v/v)溶液为流动相(用0.1 mol/L磷酸二氢钠缓冲盐调节pH为4.0~5.0),流速0.6 mL/min,紫外检测波长270 nm,采用外标法定量。在优化的条件下,乙酰丙酮和丙酮的线性范围分别为0.01~50.00 mg/L和0.01~30.00 mg/L,相关系数均为0.9999以上。使用HPLC测定乙酰丙酮和丙酮的含量,其相对标准偏差均小于1.0%,结果表明方法的重复性好;反应液中添加乙酰丙酮和丙酮的加标回收率均为99.00%~101.50%。与应用紫外分光光度法测定乙酰丙酮的结果相比,平均相对误差为1.48%。所建立的方法为用丙酮生产乙酰丙酮等类似混合体系中乙酰丙酮的定量分析提供了依据,同时为酮类化合物的测定提供了准确、便捷的方法。  相似文献   

8.
The pressure‐volume‐temperature and thermal properties of dendrimers based on benzyl ether were measured and compared with literature values for monodisperse, linear polystyrenes. In addition, property measurements are presented for an exact linear analogue to the fifth‐generation dendrimer. The thermodynamic properties' molecular weight behavior for the dendrimers is unique when compared with that of linear polystyrene. All of the evidence presented in this work suggests that some form of structural transition occurs in the bulk at a molecular mass near that for the fourth‐generation dendrimer. No such transition is seen for polystyrene. Dendrimers exhibit an increased packing efficiency as evidenced by a decreased specific volume (increased density) as compared with an exact linear analogue of the fifth‐generation dendrimer analogue, and the dendrimer highlights the entropic differences between the two molecules. In addition, differences in the change in heat capacity with temperature for the two systems further allude to their entropic differences. A crystalline state can be formed for the lower generation dendrimer and linear analogue. This crystalline state is not seen in dendrimers above the third generation. These behaviors compiled with the difference in the glass‐transition temperature for the linear analogue suggest that the dendrimers' microstructure has a significant influence on the bulk thermodynamic state of the material. The Tait equation was fitted to the volume data for comparative purposes; the Tait equation has known limitations but was selected because of its widespread application. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1766–1777, 2001  相似文献   

9.
Summary The thermodynamic data for NZP compounds MZr2(PO4)3 (M=Na, K, Rb, Cs, Zr0.25) and Na5D(PO4)3 (D=Ti, Zr) are reported. The heat capacities of the phosphates were measured between T=7 and T=640 K. The standard enthalpies entropies, and Gibbs functions of formation at T=298.15 K were derived. The obtained thermodynamic characteristics of phosphates of the NZP type structure and literature data are summarized. Thermodynamic functions of reactions of solid-state synthesis were calculated and the usability of ceramic technology for obtaining NZP compounds was proved.  相似文献   

10.
The heat capacities of D-galactose and galactitol were measured on a quantum design physical property measurement system(PPMS) over a temperature range of 1.9―300 K, and the experimental data were fitted to a function of T using a series of theoretical and empirical models in appropriate temperature ranges. The fit results were used to calculate thermodynamic function values,Cp,mθ0TSmθ, and Δ0THmθfrom 0 K to 300 K. The standard molar heat capacity, entropy and enthalpy values of D-galactose and galactitol at 298.15 K and 0.1 MPa were determined to be Cp,mθ =(227.96±2.28) and (239.50±2.40) J·K-1·mol-1,Smθ= (211.22±2.11) and (230.82±2.30) J·K-1·mol-1 and = Hmθ (33.95±0.34) and (36.57± 0.37) kJ/mol, respectively.  相似文献   

11.
Unfilled and carbon black-filled samples of synthetic isoprene- and butadiene-methylstyrenebased rubbers were characterized by precise heat capacity measurements in the temperature interval 4.2–300 K. Both unfilled samples proved to behave in an essentially fracton-like way in the temperature interval 6–30 K. The excess thermodynamic quantities derived from the smoothed data suggested that the thermodynamic state of the elastomeric phase in the filled rubbers was intrinsically unstable.  相似文献   

12.
本文用精密自动绝热量热仪测定了2-甲基-2-丁醇在80~305 K温区的热容,从热容曲线(Cp-T) 发现三个固-固相变和一个固-液相变, 其相变温度分别为T = 146.355, 149.929, 214.395, 262.706 K。从实验热容数据用最小二乘法得到以下四个温区的热容拟合方程。在80~140K温区, Cp,m = 39.208 + 8.0724X - 1.9583X2 + 10.06X3 + 1.799X4 - 7.2778X5 + 1.4919X6, 折合温度X = (T –110) / 30; 在 155 ~ 210 K温区, Cp,m = 70.701 + 10.631X + 12.767X2 + 0.3583X3 - 22.272X4 - 0.417X5 + 12.055X6, X = (T –182.5) /27.5; 在220 ~ 250 K温区, Cp,m = 99.176 + 7.7199X - 26.138X2 + 28.949X3 + 0.7599X4 - 25.823X5 + 21.131X6, X = (T – 235)/15; 在 270~305 K温区, Cp,m =121.73 + 16.53 X- 1.0732X2 - 34.937X3 - 19.865X4 + 24.324X5 + 18.544X6, X = (T –287.5)/17.5。从实验热容计算出相变焓分别为0.9392, 1.541, 0.6646, 2.239 kJ×mol-1; 相变熵分别为6.417, 10.28, 3.100, 8.527 J×K-1×mol-1。根据热力学函数关系式计算出80~305 K温区每隔5 K的热力学函数值 [HT –H298.15]和 [ST –S298.15]。  相似文献   

13.
用精密自动绝热量热计测定了2-噻吩乙酸在78~343 K温区内的摩尔热容. 实验结果表明, 在78~314和337~343 K温区内, 该化合物无相变及其他热异常现象发生, 将实验数据拟合得到了该化合物热容随温度变化的多项式方程; 在314~337 K温区内, 该物质发生固-液熔化相变, 其熔化温度、熔化焓、熔化熵及样品纯度分别确定为: 335.745 K, 16.260 kJ•mol-1, 48.415 J•K-1•mol-1和98.555%. 根据热力学函数关系式, 由热容数据计算出了2-噻吩乙酸在80~340 K温区内相对于标准参考温度298.15 K的热力学函数值.  相似文献   

14.
The temperature dependence of the molar heat capacities of the tellurites PbTeO3, Pb2Te3O8 and Ge(TeO3)2 are determined. By statistical manipulation of the values obtained, the parameters in the equations for the corresponding compounds showing this dependence are determined using the least-squares method. These equations and the standard molar entropies are used to determine the thermodynamic functions Δ0 T S m 0 , ΔT T H m 0 and (Φm 00 T H m 0/T) for T'=298.15 K.  相似文献   

15.
应用Micro-DSCⅢ微热量仪的两种连续比热容测定模式对1,1-二氨基-2,2-二硝基乙烯(FOX-7)比热容进行了测定. 得到298.15 K时FOX-7的标准摩尔比热容分别为176.56和176.02 J•mol-1•K-1, 相对偏差为0.31%. 运用Gaussian 03W程序的DFT-RB3LYP/6-311++G**方法对FOX-7在283~353 K温度范围内进行了比热容理论计算, 结果为147.11~170.54 J•mol-1•K-1, 与Micro-DSCⅢ微热量仪测定值偏差在13.27%~15.46%之间. 用测得的比热容方程计算了298.15 K为基础的FOX-7的热力学函数并得到了绝热至爆时间.  相似文献   

16.
The volumes and enthalpies of solution of adamantane and of cyclohexane in methanol, ethanol, acetone, and n-dodecane have been measured as a function of concentration at 25°C. The standard molar volumes and enthalpies of adamantane have been resolved into cavity and interaction terms. The former have been calculated from the equations of the scaled-particle theory whereas the latter have been deduced from a model which assumes some proportionality between adamantane-solvent and cyclohexane-solvent interactions. The model, which had been previously verified with normal liquids, now also proves to be very satisfactory with solvents involving strong, nonadditive interactions.  相似文献   

17.
The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.  相似文献   

18.
Zinc formate dihydrate has been synthesized and characterized by powder X-ray diffraction, elemental analysis, FTIR spectra and thermal analysis. The molar heat capacity of the coordination compound was measured by a temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 200 to 330 K for the first time. The thermodynamic parameters such as entropy and enthalpy vs. 298.15 K based on the above molar heat capacity were calculated. The thermal decomposition characteristics of this compound were investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). TG curve showed that the thermal decomposition occurred in two stages. The first step was the dehydration process of the coordination compound, and the second step corresponded to the decomposition of the anhydrous zinc formate. The apparent activation energy of the dehydration step of the compound was calculated by the Kissinger method using experimental data of TG analysis. There are three sharply endothermic peaks in the temperature range from 300 to 650 K in DSC curve.  相似文献   

19.
Monte Carlo simulation of liquid acetone was carried out. The effect of electrostatic and van der Waals interactions on the regularities of mutual arrangement of the molecules was studied. Spatial structure of liquid acetone is determined by the molecular shape, repulsive intermolecular interactions, and steric factors and is close to the structure of a random closely packed system of soft spheres. Electrostatic interactions affect only the mutual orientation of the molecules. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 25–34, January, 1999.  相似文献   

20.
Temperature dependences of the heat capacity of carbosilane dendrimers with butyl terminal groups of the seventh and ninth generations were determined in the temperature range from 6 to 600 K by precision adiabatic vacuum calorimetry and differential scanning (dynamic) calorimetry. The physical transitions were revealed and their thermodynamic characteristics were analyzed. The experimental data obtained were used to calculate the standard thermodynamic functions C p (T), H°(T) − H°(0), S°(T), and G°(T) − H°(0) for the temperature range from T → 0 to 600 K. The thermodynamic function-molar weight isotherms for the dendrimers of the third–ninth generations with terminal butyl groups in the glassy and highly elastic state are linear. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1924–1928, October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号