首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The progress that has been made in establishing the mechanism of the curing reaction between epoxides and amines, particularly through the use of calorimetric methods (DSC), is discussed. A novel application of tritium-labelled compounds to the study of the reaction of epoxides with imidazoles is also presented. The radiochemical method has produced an enhanced understanding of the reaction mechanism and has given kinetic data in good agreement with DSC measurements.  相似文献   

2.
The optimization of proportions of novolac epoxy resin, Dobeckot E4 and polyamide hardener, EH411 has been established by DSC and the data indicates that resin-polyamide, 100∶40 and 100∶50, appear to be optimum where ‘extent of cure’ is maximum. The kinetic parameters for these formulations have been evaluated using isothermal and dynamic modes by employing DSC. The rate constants have been evaluated for curing process of these formulations using isothermal DSC mode in the temperature range of 70°–90°C. These have also been predicted at 20°±1°C (room temperature) by extrapolating the data obtained at elevated temperatures. A comparison of the predicted values with the experimental values shows that there is a good agreement between them.  相似文献   

3.
Prepolymers were prepared by the reaction of 3,9-dihydroxyethyl-3′9′-dibenzyl-1,5,7,11-tetraoxaspiro(5,5)undecane with 4,4′-diphenylmethane diisocyanate (MDI) and 1,6-hexa-methylene diisocyanate (HDI). The number-average molecular weights of the prepolymers can be controlled by changing the mole ratios of spiro compound and diisocyanates. Kinetic studies of the cure reaction for the epoxy resin system modified with or without prepolymers were followed by a HLX-1 dynamic torsional vibration apparatus. The results indicated that gel time (tg) and activation energy (Ea) increased as the content of prepolymers in the epoxy resin system increased. A difference with the cure reaction of the pure epoxy resin, the second-order reaction for the epoxy resin modified with the prepolymers, was obtained. Rate constants (k) of the cure reaction are 0.231 min?1 for the epoxy resin, and 0.312 min?1 for the modified epoxy resin. The mechanism of the cure reaction was discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Polyethersulfone (PES)-modified epoxy systems with stepwise reaction were studied throughout the entire curing process by using optical microscopes, time-resolved light scattering (TRLS), and a rheolometry instrument compared with that of chainwise polymerization. The results suggested that the phase separation process is mainly controlled by the diffusion of epoxy oligomers for stepwise mechanism system and by that of epoxy monomers for chainwise mechanism system. In case of high PES content (SPES-20%) light-scattering results showed a viscoelastic phase separation and the characteristic relaxation time of phase separation can be described well by the WLF equation. However, in the case of low PES content (SPES-14%) secondary phase separation phenomenon was observed by Optical Microscope and further demonstrated by rheological study.  相似文献   

5.
By means of an epoxynovolac resin with BF3 complex the suitability of measurements of electrical properties for the investigation of curing process and for the evaluation of cured resins is illustrated. The origin of electrical conductivity and polarization is elucidated.  相似文献   

6.
采用端甲氧基聚乙二醇、马来酸酐、E-44环氧树脂合成了反应型环氧树脂乳化剂MeO-PEG-Ma-E-44,以相反转乳化技术制备E-44水性环氧树脂,研究了工艺条件对其性能的影响。结果表明:酯化率达98.5%的MeO-PEG-Ma-E-44,用量为E-44的ω=16.5%-20%得到的水性环氧树脂乳液最稳定。DSC和TG分析结果表明:乳化前后的E-44环氧树脂都能室温条件2h内很好的固化,固化后热性能基本不变,分解温度约在380℃,热失重率89%,其玻璃转变温度有所降低,韧性有所提高,其它性能基本不受影响。  相似文献   

7.
The current research work presents a novel nonionic curing agent (AEDA) synthesized by utilizing ethylene glycol diglycidyl ether (EGDE), 3,4-dimethoxyaniline (DI), and triethylenetetramine (TETA). Infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to characterize the structure of AEDA curing agent. Non-isothermal scanning calorimetry was used to determine the activation energy and curing conditions of epoxy resin in the curing process. An impact testing machine, a tensile testing machine and a scanning electron microscope (SEM) were used to analyze the impact strength, tensile strength, bending strength, and micromorphology of the AEDA/E-51 system with different mass ratios. The results show that AEDA is an effective high-temperature curing agent. For the AEDA/E-51 system with the optimal mass ratio of 10:100, the best curing temperature is 92.15°C, and the post-curing temperature is 135.65°C. Furthermore, the apparent activation energy (Ea) of 1670 J/mol, the pre-exponential factor (A) of 3.7 × 10?4, and the reaction series (n) value of 0.76 are obtained for the AEDA/E-51 system. The impact strength of AEDA/E-51 epoxy resin polymer is 7.82 kJ/m2, tensile strength is 14.2 MPa, and bending strength is 18.92 MPa. The micromorphological results of the AEDA/E-51 system are consistent with the results of DSC test and mechanical properties test. Hence, this study provides theoretical support for the practical applications of AEDA as curing agent.  相似文献   

8.
In contrast to common curing reactions, the anhydride curing of epoxies follows a living anionic chain growth. The resulting consequences of this mechanism, i.e. (1) DPn = a[Mo]/[Io], (2) first-order kinetics and (3) Poisson chain-length distribution were tested with the phenyl glycidyl ether/phthalic acid anhydride system, using l-methyl imidazole. Overall agreement was found and the observed deviations could be explained with a modified Poisson process. Conformational properties of the resins were measured by static and dynamic light scattering and by viscometry. These were compared with the quantities of a corresponding branched system prepared with a mixture of phenyl glycidyl ether and bisphenol-A diglycidyl ether. Typical deviations to smaller dimensions were observed at high molar masses as a result of increasing branching.  相似文献   

9.
To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of (1)H spin-spin relaxation times (T(2L) (long), T(2S) (short) and T(2M) (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T(2S) value below 20 micros suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, P(S), sigmoidally increased with the curing time. On the other hand, the fraction of T(2L), P(L), decreased with the reaction time reciprocally against P(S), suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T(1), was also measured to check another aspect of molecular motion in the process. T(1) of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10(-6) s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.  相似文献   

10.
Synthesis and curing behavior of a novel liquid crystalline epoxy resin   总被引:1,自引:0,他引:1  
This article described the synthesis and mesomorphic behavior transition of a novel liquid crystalline (LC) epoxy resin 4-(2,3-epoxypropoxy)biphenyl,4″-(2,3-epoxypropoxy)phenyl-4′carboxylate (EBEPC), which combined a hydroxyl benzoic aromatic ester and biphenol rigid-rod group. EBEPC showed a clear nematic schlieren texture under curtain conditions. The reaction kinetics of EBEPC cured by 4,4′-diaminodiphenyl-methane (DDM) was studied by using an isoconversional method under isothermal conditions with differential scanning calorimetry (DSC). The isothermal DSC data can be fitted reasonably by an autocatalytic curing model. Smectic phases had been observed in the EBEPC/DDM curing system. The results of DSC showed that the formation of the LC phase had pronounced influence on the curing reaction.  相似文献   

11.
Vitrification phenomena and further structural relaxation processes or physical ageing occurring in the isothermal curing reaction of an epoxy resin are studied by Differential Scanning Calorimetry (DSC). The vitrification time,t v , the limiting conversion degree and the limiting glass transition temperature (T g) are evaluated at curing temperatures (T c) between 30 and 100C. The dependence of limitingT g withT c permits the determination of the maximumT g of the resin (109C). The physical ageing, which appears as the the last step of curing reaction for curing times above to vitrification, is analyzed through the endothermic peak superposed to the glass transition temperature. The results obtained in partially reticulated resin show the kinetics of the physical ageing to slow down asT c increases, as a consequence that the segmental mobility is reduced.
Zusammenfassung VitrifikationphÄnomeme und strukturelle Relaxations-respektive AlterungsvorgÄnge von Epoxiden wurden mitells isothermer DSC Messungen untersucht. Die Vitrifikationszeit, der Grenzwert des Unwandlungsgrades und die Grenztemperatur der Glasumwandlung wurden in Bereich von 30 bis 100C ermittelt. Werden Epoxide für Temperaturen unterhalb der Glasumwandlungstemperatur einer thermischen Behandlung ausgesetzt, so bilden sich SpannungszustÄnde aus, die bei der ErwÄrmung unmittelbar über der Glasumwandlungstemperatur mit einem endothermen Vorgang relaxieren.


Financial support of this work has been provided by CICYT (project No. PBO395/85). Special thanks are addressed to CIBA-GEIGY for supplying the materials.  相似文献   

12.
Different formulations, composed of the diglycidyl ether of bisphenol-A, diepoxidized cardanol as reactive diluent, an anhydride as curing agent, and a tertiary amine as curing catalyst, with/without the use of an epoxy fortifier, were analysed. The effect of the fortifier on the diluent was also observed. The overall kinetics of curing was observed to follow a simple Arrhenius-type temperaturedependence, with an activation energy in the range 54–120 kJ/mol, with first-order kinetics up to 85% conversion. An increase in activation energy was observed with an increase of diluent content. The curing reaction was found to follow a three-step mechanism, involving a nucleophilic bimolecular displacement reaction, for which an explanation was offered. Incorporation of the fortifier lowers the curing temperature, but does not alter the final degree of reaction.
Zusammenfassung Es wurden verschiedene Ausgangsgemische, bestehend aus dem Diglyzidyläther von Bisphenol A, diepoxydiertem Kardanol als reaktives Streckmittel, einem Anhydrid als Vernetzungsmittel und einem tertiären Amin als Vernetzungskatalysator mit bzw. ohne Anwendung eines Fortifyers untersucht. Der Einfluss des Fortifyers auf das Streckmittel wurde ebenfalls untersucht. Die Bruttokinetik der Vernetzung zeigt eine Temperaturabhängigkeit einfachen Arrhenius-Types mit einer Aktivierungsenergie im Bereich von 54–120 kJ/mol sowie einen Reaktionstyp erster Ordnung mit einer Konversionsrate von 85%. Ein steigender Streckmittelgehalt bewirkt ein Anwachsen der Aktivierungsenergie. Der Vernetzungsreaktion liegt ein Dreistufenmechanismus zu Grunde, der unter anderem auch eine nukleofile bimolekulare Substitutionsreaktion beinhaltet. Der Einsatz eines Fortifyers senkt zwar die Vernetzungstemperatur, verändert aber nicht die Endkonversionsrate.

, , , , , , , , . . , 54–120 ·–1 85% . . , , , . , .
  相似文献   

13.
The thermal and photochemical ageing of epoxy resin was studied using photoacoustic-FTIR spectroscopy. This technique was satisfactory for both unfilled resin and glass fibre filled epoxy composite. The influence of the curing agent (anhydride or amine) was significant for ageing. The durability of anhydride-epoxy system was the best for both thermal and photoageing.  相似文献   

14.
Aromatic liquid crystalline epoxy resin (LCE) based on naphthalene mesogen was synthesized and cured with aromatic diamines to prepare heat‐resistant LCE networks. Diaminodiphenylester (DDE) and diaminodiphenylsulfone (DDS) were used as curing agents. The curing reaction and liquid crystalline phase of LCE were monitored, and mechanical and thermal properties of cured LCE network were also investigated. Curing and postcuring peaks were observed in dynamic DSC thermogram. LCE network cured with DDE displayed liquid crystalline phase in the curing temperature range between 183 and 260°C, while that cured with DDS formed one between 182 and 230°C. Glass transition temperature of cured LCE network was above 240°C, and crosslinked network was thermally stable up to 330°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 419–425, 1999  相似文献   

15.
In order to expand the industrial usefulness of an isothermal time-temperature-transformation (TTT) cure diagram, a method to make it applicable to a solid-state sample involving only resins and a catalyst was studied by using dynamic DSC (DDSC) and cone plate dynamic mechanical analysis (DMA). To estimate how much curing occurred for an industrially used epoxy resin molding compound manufactured in a production process was also studied, together with its position in the TTT cure diagram. The TTT cure diagram proved to be useful for determining the differences between compounds without their dissolution in a solvent, and for estimating their heat history during the production process.  相似文献   

16.
The influence of the cure process and the resulting reaction‐induced phase separation (RIPS) on the crystallization and melting behavior of polyoxymethylene (POM) in epoxy resin diglycidylether of bisphenol A (DGEBA) blends has been studied at different cure temperatures (180 and 145 °C). The crystallization and melting behavior of POM was studied with DSC and the simultaneous blend morphology changes were studied using OM. At first, the influence of the epoxy monomer on the dynamically crystallized POM was investigated. Secondly, a cure temperature above the melting point of POM (Tcure = 180 °C) was applied for blends with curing agent to study the influence of resulting phase morphology types on the crystallization behavior of POM in the epoxy blends. Large differences between particle/matrix and phase‐inverted structures have been observed. Thirdly, the cure temperature was lowered below the melting temperature of POM, inducing isothermal crystallization prior to RIPS. As a consequence, a distinction was made between dynamically and isothermally crystallized POM. Concerning the dynamically crystallized material, a clear difference could be made between the material crystallized in the homogeneous sample and that crystallized in the phase‐separated structures. The isothermally crystallized POM was to a large extent influenced by the conversion degree of the epoxy resin. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2456–2469, 2007  相似文献   

17.
The synthesis of an aromatic ester based liquid crystalline epoxy resin (LCE) with a substituent in the mesogenic central group is described. Chlorine and methyl groups were introduced as substituents. The curing behaviors of three epoxy resins were investigated using diaminodiphenyl ester as the curing agent. The curing rate and heat of curing of LCE were measured with dynamic and isothermal DSC. The chlorine substituent accelerated the curing of LCE, while the methyl substituent decelerated the curing of LCE. The heat of curing of substituted LCE was diminished compared to LCE with no substituent. Glass transition temperature and elastic modulus of LCE decreased with increasing the size of the substituent. Three liquid crystalline epoxy resins based on aromatic ester mesogenic groups formed a liquid crystalline phase after curing, and the liquid crystalline phase was stable up to the decomposition temperature. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 911–917, 1998  相似文献   

18.
The quasi-isothermal curing of a diepoxide resin with a triamine of polyoxypropylene was studied by alternating differential scanning calorimetry (ADSC), which is a temperature modulated DSC technique. The complex heat capacity measurements allows to analyse the vitrification process at curing temperatures (Tc) below the maximum glass transition of the fully cured epoxy (Tg=85.8°C). Initially, the modulus of the complex heat capacity, |C*p|, increases until a maximum (conversion between 0.42 and 0.56) and then decreases. This step is followed by an abrupt decay of |C*p|, due to the vitrification of the system, which allows the determination of the vitrification time. This value agrees well with that determined by the partial curing method. The phase angle and out-of-phase heat capacity show an asymmetric wide peak during the vitrification process. The change in |C*p| at vitrification decreases with the increase of Tc becoming zero at temperature Tg. This epoxy-triamine system shows a delay of the vitrification process respect to other model epoxy systems probably due to the presence of polyoxypropylene chains in the network.

The decay of |C*p| during vitrification may be normalised between unity and zero by defining a mobility factor. This mobility factor has been used to simulate the reaction rate during the stage where the reaction is controlled by diffusion. The observed reaction rate is simulated by the product of the kinetic reaction rate, determined by the autocatalytic model, and the mobility factor.  相似文献   


19.
A kind of aromatic diamine, 4′, 4″-(2, 2-diphenylethene-1, 1-diyl)dibiphenyl-4-amine (TPEDA), was successfully synthesized via Suzuki coupling reaction. The TPEDA containing nonplanar rigid moieties can be used as epoxy resins curing agent to improve the complex properties of cured composites. The curing kinetics during thermal processing of E51/TPEDA system was investigated by nonisothermal differential scanning calorimeter. The average activation energy (E α), pre-exponential factor (lnA), and reaction order (n) calculated from the Kissinger, the Ozawa, the Friedman and the Flynn–Wall–Ozawa methods were 55.8 kJ mol?1, 9.4 s?1 and 1.1, respectively. By the aid of estimated kinetic parameters, the predicted heat generation vs temperature curves fit well with the experimental data, which supported the validity of the estimated parameters and the applicability of the analysis method used in this work. By the introduction of nonplanar rigid moieties, the cured epoxy resins with TPEDA exhibited a higher glass transition temperature (T g = 258 °C), good thermal stability (≈395 °C at 10 % mass-loss), and high char yield (36.6 % at 700 °C under nitrogen) compared with conventional curing agents.  相似文献   

20.
环氧树脂防水涂料的性能与固化剂有着很大的关系.本文作者合成出一种酮亚胺固化剂,通过实验考察了影响其产率的因素,并与其他三种常用的固化剂在性能上进行了比较.结果表明,酮亚胺的固化效果优良,当甲基异丁基酮(MIBK)与间苯二甲胺(MXDA)单体投料比为3∶1时,产率较高,最佳的合成反应温度为130℃,反应时间为3.5h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号