首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with computer image analysis (CIA) and the transition of shear yielding zone (A_(sh)) with rubber volume fraction (V_f) was also manipulated. Results showed that the B-D transition of impact strength of blends corresponded to the fracture mechanism in PP/EPDM blends, from matrix crazing to matrix shear yielding. In addition, two new parameters, density of energy dissipation for crazing zone (F_(cz)) and for shear yielding zone (F_(sh)), are first obtained in this paper. The value of F_(sh) is about four times larger than that of F_(cz) for PP/EPDM blends, which confirmed that the matrix shear yielding is a more effective way of energy dissipation in blends.  相似文献   

2.
The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content, PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.  相似文献   

3.
For a more complete understanding of the toughening mechanism of polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, dynamic packing injection molding was used to control the phase morphology and rubber particle orientation in the matrix. The relative impact strength of the blends increased at low EPDM contents, and then a definite ductile–brittle (D–B) transition was observed when the EPDM content reached 25 wt %, at which point blends should fail in the ductile mode with conventional molding. Wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to investigate the shear‐induced crystal structure, morphology, orientation, and phase separation of the blends. WAXD results showed that the observed D–B transition took place mainly for a constant crystal structure (α form). Also, no remarkable changes in the crystallinity and melting point of PP were observed by DSC. The highly oriented and elongated rubber particles were seen via SEM at high EPDM contents. Our results suggest that Wu's criterion is no longer valid when dispersed rubber particles are elongated and oriented. The possible fracture mechanism is discussed on the basis of the stress concentration in a filler‐dispersed matrix. It can be concluded that not only the interparticle distance but also the stress fields around individual particles play an important role in polymer toughening. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2086–2097, 2002  相似文献   

4.
To study the brittle–ductile transition (BDT) of polypropylene (PP)/ethylene–propylene–diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side‐edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope. Furthermore, a diagram at critical BDT points in three dimensions (ID, T, and initial strain rate) was given for the PP/EPDM blends. The brittle and ductile zones are clearly shown in this diagram. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1433–1440, 2004  相似文献   

5.
The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends ; (2) The β-type crystal structureof PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.  相似文献   

6.
给出了分散相粒间基体层厚度T与分散相粒径(d)、粒径分散度(σ)和分散相体积分数()的定量关系式.发现σ对T的影响与有关,不仅T随σ的增大而增大,而且越大,这种影响越显著.用计算机图像分析仪直接测定了聚氯乙烯/丁腈橡胶、聚丙烯(PP)/三元乙丙橡胶、PP/乙烯 醋酸乙烯酯共聚物共混物的T,发现这三种共混物的T近似于对数正态分布.理论预示与实验结果很好符合.  相似文献   

7.
研究了动态硫化EPDM/PP共混物中PP相的结晶度及晶体结构,同时讨论了制备工艺条件以共混物中PP相的结晶度和晶体结构的影响。结果表明:在动态硫化EPDM/PP共混物中,硫化的EPDM的分子键没有穿入PP的晶区,PP的结晶度随EPDM含量的增加而下降。提高共混温度,加入软化剂或碳黑均使共混物中PP的结晶度降低,共混时间15min时,共混物中PP相的结晶度最低,但PP的晶格不受制备工艺条件的影响。  相似文献   

8.
环氧化三元乙丙橡胶增韧聚对苯二甲酸丁二酯的脆韧转变   总被引:3,自引:0,他引:3  
环氧化的三元乙丙橡胶(eEPDM)与聚对苯二甲酸丁二酯(PBT)共混可以使PBT共混体的缺口冲击强度获得很大的提高.当eEPDM橡胶浓度为24wt%时,PBTeEPDM共混体的缺口冲击强度是纯PBT的12倍.随着eEPDM含量的增加,在室温下PBTeEPDM共混体出现了明显的脆韧转变,其脆韧转变的临界粒子间距为0.49μm.橡胶的加入及含量的增加使PBT体系的脆韧转变温度(TBD)向低温移动,且PBTuEPDM与PBTeEPDM共混体脆韧转变温度的差随橡胶含量的增加而逐渐增大.扫描电镜照片表明,在橡胶组成相同的情况下,PBT基体中分散的eEPDM粒子明显小于未环氧化的EPDM粒子.且eEPDM橡胶的粒子间距(ID)也明显地低于uEPDM橡胶粒子的ID,这导致PBTeEPDM共混体系在室温下出现脆韧转变.  相似文献   

9.
The effects of nucleating agents (NAs) on fracture toughness of injection‐molded isotactic poly(propylene)/ethylene‐propylene‐diene terpolymer (PP/EPDM) were studied in this work. Compared with PP/EPDM blends without any NA, PP/EPDM/NA blends show very small and homogeneous PP spherulites. As we expected, PP/EPDM blends nucleated with β‐phase NA aryl amides compound (TMB‐5) present not only a significant enhancement in toughness but also a promotion of brittle‐ductile transition. However, the addition of α‐phase NA 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) has no apparent effect on the toughness of the blends. The impact‐fractured surface morphologies of such samples were analyzed via scanning electronic microscope (SEM). More detail work about the toughening mechanisms of elastomer and NA based on elastomer particles size and matrix crystal structures were carried out. Our results suggest that, besides the crystal structures of matrix, the elastomer particles size and size distribution plays an important role in controlling the toughening effect of nucleated PP/elastomer blends. The smaller the elastomer particles size and lower the polydispersity, the more apparent the synergistic toughening effect of NA and elastomer is. This investigation provides a fresh insight into the understanding of toughening mechanism of elastomers in PP blends and facilitates to the design of super toughened PP materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 46–59, 2009  相似文献   

10.
马桂秋 《高分子科学》2015,33(11):1538-1549
The compatibility between isotactic polypropylene(i PP) and ethylene-propylene-diene terpolymer(EPDM) in the blends was studied. SAXS analysis indicates that i PP and EPDM phases in the binary blend are incompatible. Isothermal crystallization behaviors of i PP in phase-separated i PP/EPDM were studied by in situ POM equipped with a Linkam shear hot stage. It was found that typical spherulites of i PP were formed both in neat i PP and in i PP/EPDM blends. The radial growth rate(d R/dt) of spherulites of i PP in the blend was not influenced by EPDM phases. Further investigations on isothermal crystallization of i PP in i PP/EPDM after shear with a fixed shear time showed that the crystallization rate of i PP in the blends increased with increasing shear rates, whereas, the crystallization rate was much lower than that of neat i PP. WAXD results showed that ?-crystal i PP was formed in neat i PP as well as in i PP/EPDM blends after shearing and the percentage of ?-crystal bore a relationship to the applied shear rate. The presence of EPDM resulted in lower percentage of ?-crystal in the blends than that in neat i PP under the same constant shear conditions. SAXS experiments revealed that shear flow could induce formation of oriented lamellae in i PP and i PP in the blends, and the presence of EPDM led to a reduced fraction of oriented lamellae.  相似文献   

11.
纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究   总被引:83,自引:0,他引:83  
通过力学性能测试、动态力学试验、DSC 分析以及材料断面形貌与结构分析等手段,对以纳米二氧化硅(SiO2) 为刚性微粒、以三元乙丙橡胶(EPDM) 为弹性微粒组成的聚丙烯(PP)/ 纳米SiO2/EPDM 的同时增强增韧效果进行了研究.结果显示,上述两种微粒可同时大幅度提高PP 的韧性、强度和模量,当PP/ 纳米SiO2/EPDM 为80/3/20 时,两种微粒体现较明显的协同增韧效应.纳米SiO2 可提高PP 的结晶温度和结晶速度,并使球晶细化.纳米SiO2 刚性微粒在PP连续相中以微粒团聚体形态分布,构成团聚体的平均微粒数约为6 ~7 ,其与PP基体表现出较强的结合牢度.PP/ 纳米SiO2/EPDM 的综合性能已接近或达到工程塑料的性能.  相似文献   

12.
The aim of this study was to introduce a new method for determining the surface composition and surface order of PP/EPDM (propylene/ethylene–diene–monomer rubber) blends, based on surface-enhanced infrared spectroscopy. PP/EPDM blends were characterized by Fourier transfer IR–attentuated total reflectance (FTIR-ATR) using two different internal reflection elements, Ge and KRS-5. These elements provide information at different depths and show differences in relative band intensities. A linear relationship between the ratio of the bands at 2850 and 2920 cm?1 EPDM content was obtained when well-defined compositions of PP and EPDM mixtures were used. Changes in crystallinity were measured by the ratio of the bands at 2959 and 2951 cm?1. For comparison, bands in the lower region of the spectrum and DSC and WAXS measurments were used. It was shown by two calibration methods that FTIR-ATR can provide information on surface composition and surface crystallinity at very low penetration depths. This new method indicates that injection-molded sample show a lower surface order and lower EPDM content at the surface than is seen in bulk. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Morphology development and phase inversion were investigated during dynamic vulcanisation of ethylene–propylene–diene terpolymer (EPDM)/polypropylene (PP) blends. The effects of viscosity ratio and cross-linking reactions were also addressed. EPDM/PP blends were dynamically vulcanised in a Haake batch mixer using resole and SnCl2 as cross-linking agents. The morphology development and cross-linking degree with reaction time were followed by morphology analysis (SEM and TEM) and measurement of EPDM gel content, respectively. For the same reaction time, it was found that the EPDM gel content decreased when the low-molecular-weight EPDM was used. As a result, the morphological development was delayed and the phase-inversion point was shifted to higher reaction times, allowing us to monitor morphological development during a thermoplastic vulcanisate (TPV) preparation. Using the low-molecular-weight EPDM and increasing the PP viscosity accelerated the morphological development, shifting phase-inversion to lower reaction times. While blend composition influenced final TPV morphology, it had a minor effect on the mechanism of morphological development. A correlation between cross-linking degree and morphology development was established. The results obtained allowed to propose a mechanism of morphology development during dynamic vulcanisation of the EPDM/PP blends, including phase inversion.  相似文献   

14.
In this study, relatively large amounts of polypropylene (PP), ethylene‐propylene‐diene (EPDM), and multi‐walled carbon nanotube (MWCNT) were melt‐mixed with and without DCP. Dynamically vulcanized PP/EPDM (TPV)/MWCNT nanocomposites were prepared by two methods: the MWCNTs were added either before or after the dynamic vulcanization of the blends. The effects of composition, rotor speed, and dynamic vulcanization on their surface resistivity were investigated. The surface resistivity of uncross‐linked PP/EPDM/MWCNT nanocomposites increases with increasing the content of EPDM. At PP/EPDM (70/30 wt%) nanocomposite with 1.5 phr MWCNT, slightly lower surface resistivity is obtained by increasing the rotor speed during mixing. However, for PP/EPDM (50/50 wt%) and PP/EPDM (30/70 wt%) nanocomposites, surface resistivity decreases with increasing the rotor speed from 30 to 60 rpm. But further increase in rotor speed (90 rpm) leads to an increase of surface resistivity. When the MWCNTs were added after the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNTnanocomposite is lower than that of uncross‐linked PP/EPDM/MWCNT nanocomposite. However, when the MWCNTs were added before the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNT nanocomposite is >1012 Ω/square. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Positron annihilation lifetime measurements were performed on pure polypropylene (PP), ethylene-propylene-diene monomer (EPDM) rubber, and their blends PP/EPDM with a series of EPDM volume fraction ϕ (= 10–40%). A numerical Laplace inversion technique (i.e., CONTIN algorithm), was employed to obtain the probability distribution functions (PDF) of free-volume radius. We observed that, first, the average free-volume radius in PP/EPDM blends is generally same as that in PP and is much smaller than that in EPDM. Second, the standard deviation σR or the width of the free-volume radius PDF in the blend decreases with ϕ in the region of ϕ = 10ndash;30%, and it increases when ϕ increases from 30% to 40%. The difference in the σR of the blend and the calculated value σc R according to the simple-mixing rule of PP and EPDM is interpreted by the existence of the two-phase interaction (i.e., the residual thermal pressure and shear stress between PP and EPDM phases in the PP/EPDM blends). The correlation between σR, which indicates the interaction of two phases, and the impact strength of PP/EPDM blends was found and discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
用SEM,TEM,DSC,WAXD和有效网链密度(v_e)测定,研究了共混时间长短和返炼对EPDM/PP共混物结构和性能的影响。两相分散随共混时间和返炼而更趋均匀。随共混时间,PP结晶度(x_c)先行降低然后升高,抗张强度正相反,v_e则降低x_e和v_e返炼后总是较一次共混降低。影响强度的因素主要是两相分散均匀和两相界面的相互渗透。  相似文献   

17.
Reactive melt blends of an ethylene‐propylene‐diene terpolymer (EPDM) based thermoplastic elastomer (TPE), maleic anhydride grafted polypropylene (MAH‐g‐PP), and nylon 6 were prepared in a single screw extruder and evaluated in terms of morphological, rheological, thermal, dynamic mechanical, and mechanical properties of the blends. It was found that MAH‐g‐PP‐co‐nylon 6 copolymers were in situ formed and acted as effective compatibilizers for polypropylene (PP) and nylon 6. Phase separation of PP and EPDM in TPE increased with the addition and increasing amount of MAH‐g‐PP and nylon 6, leading to decreased glass transition temperature (Tg) of TPE and increased crystalline melting temperature (Tm) of PP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Blends of polypropylene and an elastomer (ethylene propylene diene terpolymer, EPDM) are systematically investigated to determine the effect of the rubber on the polymer properties. Five compositions on the complete range of blend compositions are analyzed. The study reported here is a first of a series which main objective is to analyze in a systematic way the influence of the different factors that determine the effectiveness of EPDM as an impact modifier for PP. In this first part of the study, the processing behavior of the PP-EPDM blends are analyzed and the mechanical properties of the processed blends (tensile, flexural and impact resistance) are examined. Halpin-Tsai and porosity models successfully represent the mechanical behavior of the blends. The model results allow a physical interpretation of the role of the dispersed phase in terms of the aspect ratio and of the stress concentration factors associated to the dispersed particles. Moreover, the mechanical properties are correlated with the morphology of the blends studied by scanning electron microscopy, where two phases are clearly observed in the complete range of compositions. The results show that PP-EPDM blends with at low rubber content present a good processability, without significant deterioration with respect to neat PP and with a considerable improvement of the room and low temperature performance.  相似文献   

19.
The mechanical and rheological behavior of dynamically vulcanized PP/EPDM blends is examined and compared with those of unvulcanized blends. The effect of blend ratio and dynamic vulcanization of EPDM rubber on tensile properties and flow are investigated. The mechanical properties of the blends are strongly influenced by the blend ratio. With the increasing of EPDM content the value of yield stress in a solid state decreases with the elastomer volume fractions less than 0.45 for the unvulcanized blends. For the dynamically vulcanized blends the interval of EPDM content, at which the yield peak is seen, is rather limited below 0.25 elastomer volume fractions. It is shown that dynamic vulcanization changes the deformational behavior of PP/EPDM blends. The rheological properties of dynamically vulcanized blends depending on the ratio of the components may be similar to the properties of polymer composites containing the highly disperse structuring filler. The distinction between the rheological behavior of unvulcanized and dynamically vulcanized blends is related to differences of their structures and viscoelastic characteristics of unvulcanized and vulcanized EPDM phase.  相似文献   

20.
乙丙橡胶/聚丙烯共混体系的界面相互渗透   总被引:13,自引:0,他引:13  
本文用X射线衍射仪、差热分析仪、动态力学扭摆仪和测定有效网链密度等方法,研究了乙丙橡胶/聚丙烯(EPDM/PP)共混体系中PP的非晶部分和EPDM的相互渗透。EPDM和PP不具有互溶性,但PP的非晶部分和EPDM两相界面处有较强的相互渗透,即部分互容性。有效链密度和性能间关系的数据表明,共混体系不一定存在硫化胶那样的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号