首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on optical, mechanical and structural properties of TiO2 thin films were studied. The results showed that with the increase of oxygen partial pressure, the optical transmittance gradually increased, the transmittance edge gradually shifted to short wavelength, and the corresponding refractive index decreased. The residual stresses of all samples were tensile, and the value increased as oxygen partial pressure increasing, which corresponded to the evolutions of the packing densities. The structures of TiO2 thin films all were amorphous because deposition particles did not possess enough energy to crystallize.  相似文献   

2.
TiO2 films deposited on unheated substrates of alumina silicate glass by rf. (13.56 MHz) magnetron sputtering in the mixture of O2 and Ar gases have been studied with X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and optical spectroscopy. Structural and optical properties of TiO2 films deposited at different O2 concentrations and total pressures have been analyzed. Photocatalytic properties of TiO2 films were characterized by following the degradation of methylene blue molecules under UV irradiation. It was found that the rate of methylene blue decomposition strongly depends on morphology and crystallinity of the deposited films, namely on the content of the anatase phase and on the size of the anatase grains. The best photocatalytic activity was found on TiO2 films consisting of pure anatase phase with the size of grains of about 450 Å. With the help of those films a thin film reactor for water purification has been designed and tested.  相似文献   

3.
Thin Cd2Nb2O7 films were grown on single-crystal p-type SiO2/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO2/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements.  相似文献   

4.
In this study, SnO2/TiO2 thin films are fabricated on SiO2/Si and Corning glass 1737 substrates using a R.F. magnetron sputtering process. The gas sensing properties of these films under an oxygen atmosphere with and without UV irradiation are carefully examined. The surface structure, morphology, optical transmission characteristics, and chemical compositions of the films are analyzed by atomic force microscopy, scanning electron microscopy and PL spectrometry. It is found that the oxygen sensitivity of the films deposited on Corning glass 1737 substrates is significantly lower than that of the films grown on SiO2/Si substrates. Therefore, the results suggest that SiO2/Si is an appropriate substrate material for oxygen gas sensors fabricated using thin SnO2/TiO2 films.  相似文献   

5.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

6.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

7.
CeO2 thin films were deposited on quartz substrates by using the rf-sputtering technique. The 80-keV Ni- ion-implanted and, subsequently, post-annealed films have shown the formation of Ni oxide and Ni metallic phases at 7 at% of Ni concentration. Such secondary phases were dissolved by swift heavy ion irradiation with 200-MeV Ag+15 ion beams. Structural properties, surface roughness, and magnetic behavior of the samples were investigated by X-ray diffraction, atomic force microscopy, and hysteresis loop measurements, respectively. Dissolution of secondary phases has been discussed in the light of irradiation-induced local temperature rise and energy loss processes.  相似文献   

8.
In this study, the effects of adding Ag to TiSi2 thin films are examined. It is demonstrated that both the C49  C54 transformation temperature and the electric resistivity are appreciably lowered with Ag addition. Due to the presence of Ag nanocrystals precipitated at the C49 grain boundaries, the overall grain boundary density would increase to result in the higher nucleation rate of C54 and the lower transformation temperature. The precipitation of pure Ag network can provide another electric current conductive path except for the TiSi2 grains. Due to the lower vacuum condition and the higher oxygen content in the current sputtered and annealed films, the C49  C54 transformation temperature and the resistivity of the TiSi2-20 at%Ag films can only be reduced by ∼100 °C and 10 μΩ cm, as compared with the non-Ag additive films. With better fabrication vacuum, the transformation temperature and resistivity might be lowered to a level below 700 °C and 15 μΩ cm, which are highly applausive for engineering applications.  相似文献   

9.
SrRuO3 thin films have been grown on singular (1 0 0) MgO substrates using pulsed laser deposition (PLD) in 30 Pa oxygen ambient and at a temperature of 400-700 °C. Ex situ reflection high-energy electron diffraction (RHEED) as well as X-ray diffraction (XRD) θ/2θ scan indicated that the films deposited above 650 °C were well crystallized though they had a rough surface as shown by atom force microscopy (AFM). XRD Φ scans revealed that these films were composed of all three different types of orientation domains, which was further confirmed by the RHEED patterns. The heteroepitaxial relationship between SrRuO3 and MgO was found to be [1 1 0] SRO//[1 0 0] MgO and 45°-rotated cube-on-cube [0 0 1] SRO//[1 0 0] MgO. These domain structures and surface morphology are similar to that of ever-reported SrRuO3 thin films deposited on the (0 0 1) LaAlO3 substrates, and different from those deposited on (0 0 1) SrTiO3 substrates that have an atomically flat surface and are composed of only the [1 1 0]-type domains. The reason for this difference was ascribed to the effect of lattice mismatch across the film/substrate interface. The room temperature resistivity of SrRuO3 films fabricated at 700 °C was 300 μΩ cm. Therefore, epitaxial SrRuO3 films on MgO substrate could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.  相似文献   

10.
J. Zuo 《Applied Surface Science》2010,256(23):7096-241
Ag nanostructures on TiO2 films were deposited by RF magnetron sputtering under variable deposition parameters, such as DC potential, RF-power and total pressure. The concentration, shape, and distribution of the deposited nanostructures and continuous Ag films on thin films of TiO2 can be tailored by careful variation of the deposition parameters. Controllable clusterlike, islandlike and film Ag structures on TiO2 film were obtained, respectively. DC potential was found as an appropriate parameter to tailor the change of Ag nanostructure and the overall Ag amount. The compositions, nanostructures and morphologies of nanocomposite films appreciably influence the optical response.  相似文献   

11.
Conducting LaNiO3 thin films have been fabricated on the borosilicate glass substrates with and without the uniaxial oriented RbLaNb2O7 seed layer by an excimer laser assisted metal organic deposition process with a KrF laser irradiation at 400°C in air. The LaNiO3 thin film prepared on the seed layer had a very high Lotgering factor at F(100)=0.971, indicating highly (100)-oriented growth. The obtained LaNiO3 thin films with and without the seed layer showed low resistivity values, 4.42 and 1.02 mΩ cm at room temperature, respectively. The ρ value of the (100)-oriented LaNiO3 film on the seed layer was comparably lowered to that of the films prepared at high process temperatures reported in the previous reports.  相似文献   

12.
A low-temperature (700°C) plasma-enhanced nitridation process which improves the dielectric breakdown of thin silicon dioxide (SiO2) layers is presented. It uses a new, production compatible, parallel plate plasma reactor working at low RF frequencies. Nitrided oxides produce less charge trapping under high field stress, higher breakdown charge and a tighter distribution of breakdown fields than pure SiO2. More nitrogen is incorporated in films treated in a NH3 plasma than in a N2 plasma. However, the latter present better electrical properties.  相似文献   

13.
In order to improve the cycle stability of spinel LiMn2O4 electrode at elevated temperature, the LiCoO2-coated and Co-doped LiMn2O4 film were prepared by an electrostatic spray deposition (ESD) technique. LiCoO2-coated LiMn2O4 film shows excellent cycling stability at 55 °C compared to pristine and Co-doped LiMn2O4 films. The samples were studied by X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The excellent performance of LiCoO2-coated LiMn2O4 film can be explained by suppression of Mn dissolution. On the other hand, the LiCoO2-layer on the LiMn2O4 surface allows a homogenous Li+ insertion/extraction during electrochemical cycles and improves its structure stability.  相似文献   

14.
15.
Highly conducting films of p-type CuCrO2 are attractive as hole-injectors in oxide-based light emitters. In this paper, we report on the development of dry etch patterning of CuCrO2 thin films. The only plasma chemistry that provided some chemical enhancement was Cl2/Ar under inductively coupled plasma conditions. Etch rates of ∼500 Å min−1 were obtained at chuck voltages around −300 V and moderate source powers. In all cases, the etched surface morphologies were improved relative to un-etched control samples due to the smoothing effect of the physical component of the etching. The threshold ion energy for the onset of etching was determined to be 34 eV. Very low concentrations (≤1 at.%) of residual chlorine were detected on the etched surfaces but could be removed by simple water rinsing.  相似文献   

16.
ZnO, SnO2 and zinc stannate thin films were deposited using filtered vacuum arc deposition (FVAD) system on commercial microscope glass and UV fused silica substrates (UVFS) at room temperature (RT). The structural and morphological analyses were performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM), respectively. XRD patterns of ZnO films deposited at RT had strongly c-axis orientation, whereas SnO2 and zinc stannate films had amorphous structure as they did not have any defined patterns. Average crystalline size and surface grain size of ZnO films were ∼16 nm, as determined from diffraction line broadening and AFM images, respectively. Optical constants in the 250-1100 nm wavelength range were determined by variable angle spectroscopic ellipsometry and transmission measurements. The transmission of the deposited films in the VIS was 80-90%, affected by interference. The refractive indices and the extinction coefficients of deposited ZnO, SnO2 and zinc stannate films were in the range 1.87-2.15 and 0.02-0.04, depending on wavelengths and deposition parameters. The optical band gap (Eg) was determined by the dependence of the absorption coefficient on the photon energy at short wavelengths. Its values for ZnO, SnO2 and zinc stannate were in the range 3.25-3.30 eV, 3.60-3.98 eV and 3.43-3.52 eV, respectively, depending on the deposition pressure.  相似文献   

17.
Microstructure and magnetic properties of crystalline Ce1Y2Fe5O12 thin films prepared on GGG and on SiO2/Si substrates by pulsed laser deposition were studied. The results show that highly textured Ce1Y2Fe5O12 film with (4 4 4) preferred orientation prepared on GGG (1 1 1) shows strong paramagnetism superimposed by a weak ferromagnetism. However, polycrystalline Ce1Y2Fe5O12 thin films on SiO2/Si, which can only be obtained after post-annealing, show strong ferromagnetism with easy axis of magnetization lying in the plane of the film. With post-annealing temperature increasing, CeO2 segregates from Ce1Y2Fe5O12; then YIG continues to be decomposed, forming Fe2O3. Consequently, the saturation magnetization of Ce1Y2Fe5O12 films decreases first and then increases correspondingly, which indicates that the magnetic properties of Ce1Y2Fe5O12 films are mainly related to the microstructure.  相似文献   

18.
Highly textured chromium dioxide (CrO2) films have been deposited on Al2O3 single-crystal substrates by atmospheric pressure chemical vapor deposition method (CVD). X-ray diffraction patterns show that the CrO2 films are (1 0 0)-oriented on Al2O3 (0 0 1) substrates, and are (1 0 1)-oriented on Al2O3 (0 1 2) substrates. Scanning electron microscopy images indicate that the (1 0 0)-oriented CrO2 films grown on Al2O3 (0 0 1) substrates have smoother surface and better qualities than that grown on Al2O3 (0 1 2) substrate. At room temperature, the magnetoresistance of the (1 0 0)- and (1 0 1)-oriented CrO2 films are nearly same, and both show a linear dependence on applied magnetic field. While at 80 K, the (1 0 1)-oriented CrO2 films show a much larger magnetoresistance compared with the (1 0 0)-oriented CrO2 films. The reasons are briefly discussed.  相似文献   

19.
BaTiO3 thin films with different thickness have been grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. X-ray diffraction analyses show that the BaTiO3 thin films are polycrystalline. The crystalline quality of the films is improved with increasing thickness. The infrared optical properties of the BaTiO3 thin films have been investigated using an infrared spectroscopic ellipsometry in the wave number range of 800-4000 cm−1 (2.5-12.5 μm). By fitting the measured pseudodielectric functions with a three-phase model (Air/BaTiO3/Pt), and a derived classical dispersion relation for the thin films, the optical constants and thicknesses of the thin films have been simultaneously obtained. The refractive index of the BaTiO3 thin films increases and on the other hand, the extinction coefficient does not change with increasing thickness in the entirely measured wave number range. The dependence of the refractive index on the film thickness has been discussed in detail and was mainly due to both the crystalline quality of the films and packing density. Finally, the absorption coefficient was calculated in the infrared region for applications in the pyroelectric IR detectors.  相似文献   

20.
We report on comparative investigations of ZnO thin films and nanowires grown on SrTiO3 (STO) single crystal substrates. Using pulsed laser deposition technique, we could grow ZnO thin films with ()- and (0001)-orientations on (100)- and (110)-orientated STO substrates, respectively. ZnO nanowires, grown by vapour condensation method with Au catalyst layers, did not show preferential alignment on either of the STO substrates. When the ZnO(0001)/STO(110) film was used as seed layer, we obtained dense and vertically aligned nanowires. Whereas, few and inclined nanowires were grown on the ZnO()/STO(100) film. We discuss possible origins to cause all the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号