共查询到20条相似文献,搜索用时 31 毫秒
1.
采用相界面跟踪(V()F)数值模拟方法,研究了轴流型微流控芯片中流速比、界面张力、粘度等对乳液粒子粒径的影响。模拟结果表明:乳液粒子粒径与流速比的对数存在线性关系,在一定范围内,当流速比增大时,粒径变小;当界面张力小于0.025 N/m时,乳液粒径随界面张力增大而增加,当界面张力超过0.03N/m时,乳液粒径变化趋于平缓;分散相粘度对乳液粒径的影响甚微。以聚乙烯醇(PVA)水溶液为连续相,二乙烯基苯(DVB)溶液为分散相,采用自制的聚二甲基硅氧烷(PDMS)轴流型微流控芯进行了DVB乳液粒子成型实验研究,获得了0.5~3.0 mm的DVB乳液粒子。 相似文献
2.
In this study, a numerical assessment of the coalescence of binary water droplets in water-in-oil emulsion was conducted. The investigation addressed the effect of various parameters on the acoustic pressure and coalescence time of water droplets in oil phase. These include transducer material, initial droplet diameter (0.05–0.2 in), interfacial tension (0.012–0.082 N/m), dynamic viscosity (10.6–530 mPas), temperature (20–100 °C), US (ultra sound) frequency (26.04–43.53 kHz) and transducer power (2.5–40 W). The materials assessed are lead zirconate titanate (PZT), lithium niobate (LiNbO3), zinc oxide (ZnO), aluminum nitride (AlN), polyvinylidene fluoride (PVDF), and barium titanate (BaTiO3). The numerical simulation of the binary droplet coalescence showed good agreement with experimental data in the literature. The US implementation at a fixed frequency produced enhanced coalescence (t = 5.9–8.5 ms) as compared to gravitational settling (t = 9.8 ms). At different ultrasound (US) frequencies and transducer materials, variation in the acoustic pressure distribution was observed. Possible attenuation of the US waves, and the subsequent inhibitive coalescence effect under various US frequencies and viscosities, were discussed. Moreover, the results showed that the coalescence time reduced across the range of interfacial tensions which was considered. This reduction can be attributed to the fact that lower interfacial tension produces emulsions which are relatively more stable. Hence, at lower interface tension between the water and crude oil, there was more resistance to the coalescence of the water droplets due to their improved emulsion stability. The increment of the Weber number at higher droplet sizes leads to a delay in the recovery of the droplet to spherical forms after their starting deformation. These findings provide significant insights that could aid further developments in demulsification of crude oil emulsions under varying US and emulsion properties. 相似文献
3.
《中国物理 B》2019,(2)
Based on the volume of fluid(VOF) method, we conduct a numerical simulation to study the hydrodynamic binary coalescence of droplets under air flow in a hydrophobic rectangular microchannel. Two distinct regimes, coalescence followed by sliding motion and that followed by detaching motion, are identified and discussed. Additionally, the detailed hydrodynamic information behind the binary coalescence is provided, based on which a dynamic mechanical analysis is conducted to reveal the hydrodynamic mechanisms underlying these two regimes. The simulation results indicate that the sliding motion of droplets is driven by the drag force and restrained by the adhesion force induced by the interfacial tension along the main flow direction. The detachment(i.e., upward motion) of the droplet is driven by the lift force associated with an aerodynamic lifting pressure difference imposed on the coalescent droplet, and also restrained by the adhesion force perpendicular to the main flow direction. Especially, the lift force is mainly induced by an aerodynamic lifting pressure difference imposed on the coalescent droplet. Two typical regimes can be quantitatively recognized by a regime diagram depending on Re and We. The higher Re and We respectively lead to relatively larger lift forces and smaller adhesion forces acting on the droplet, both of which are helpful to detachment of the coalesced droplet. 相似文献
4.
We report an ultrafast x-ray phase-contrast imaging study of the early merging dynamics of two water drops in air. Owing to the edge-enhancement capability, the high penetrability, and the unprecedented temporal and spatial resolutions offered by this new x-ray technique, the coalescence singularity of two water drops was revisited. A finite initial contact radius was identified and the evolvement of the trapped toroidal air bubble was studied for the first time. Despite the existence of this finite initial contact radius, the subsequent meniscus radius followed power laws which agree with theoretical predictions for the inviscid regime. 相似文献
5.
Borcia R Menzel S Bestehorn M Karpitschka S Riegler H 《The European physical journal. E, Soft matter》2011,34(3):24-9
Mixing of droplets with a body of different liquids shows an interesting behavior for small contact angles at solid substrate.
The droplets interact with each other, a liquid exchange appears between the approaching drops owing to surface tension gradients
at the droplets interface. But the drops remain separated for some seconds (up to minutes), until the merging into a single
drop occurs (Langmuir 24, 6395 (2008)). We investigate this phenomenon using lubrication approximation and phase field approach. For both methods,
2D quantitative computer simulations for delayed fusion of perfectly miscible thin liquid films/droplets with low contact
angles are reported. 相似文献
6.
Using the nuclear magnetic resonance (NMR) pulsed field gradient (PFG) technique, it is possible to determine the size distribution of emulsion droplets. This method is extended so that the same measurements can be performed in the presence of flow. The resultant flow-compensating NMR-PFG technique is used to determine the oil droplet-size distribution of an oil-in-water emulsion flowing in a narrow tube at various flow rates. Comparison with the nonflowing oil droplet-size distribution enables the effect of velocity shear on the oil droplet-size distribution to be quantified. 相似文献
7.
Hester-Reilly HJ Shapley NC 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,188(1):168-175
This study focuses on spherical microparticles made of cross-linked alginate gel and microcapsules composed of an oil-in-water emulsion where the continuous aqueous phase is cross-linked into an alginate gel matrix. We have investigated the use of these easily manufactured microbeads as contrast agents for the study of the flow properties of fluids using nuclear magnetic resonance imaging. Results demonstrate that combined spin-spin (T(2)) relaxation and diffusion contrast in proton NMR imaging can be used to distinguish among rigid polymer particles, plain alginate beads, and alginate emulsion beads. Multi-echo CPMG spin-echo imaging indicates that the average spin-lattice (T(1)) and spin-spin (T(2)) relaxation times of the plain alginate and alginate emulsion beads are comparable. Meanwhile, diffusion-weighted imaging produces sharp contrast between the two types of alginate beads, due to restricted diffusion inside the embedded oil droplets of the alginate emulsion beads. While the signal obtained from most materials is severely attenuated under applied diffusion gradients, the alginate emulsion beads maintain signal strength. The alginate emulsion beads were added to a suspension and imaged in an abrupt, annular expansion flow. The emulsion beads could be clearly distinguished from the surrounding suspending fluid and rigid polystyrene particles, through either T(2) relaxation or diffusion contrast. Such a capability allows future use of the alginate emulsion beads as tracer particles and as one particle type among many in a multimodal suspension where detailed concentration profiles or particle size separation must be quantified during flow. 相似文献
8.
The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100–600 nm and 1–6 µm) and unimodal (200–600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®–India ink media, mimicking the optical scattering and absorbance of various tissue types. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm−1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities. 相似文献
9.
Absorption and velocity dispersion due to crystallization and melting of emulsion droplets 总被引:4,自引:0,他引:4
The influence of droplet crystallization and melting on the ultrasonic properties of oil-in-water emulsions has been investigated. The ultrasonic velocity and attenuation were measured in a series of 3 wt% n-hexadecane-in-water emulsions as a function of frequency (0.3–4 MHz), droplet diameter (0.4 and 1 μm) and temperature (0–25°C). The emulsified n-hexadecane crystallized at about 5°C due to supercooling effects and melted at about 18°C. As solid and liquid n-hexadecane have significantly different ultrasonic properties, an appreciable change in the velocity and attenuation is observed during the phase transition. This behaviour is modified significantly in systems where the emulsion droplets are partially crystalline because the temperature fluctuations associated with the ultrasonic wave can perturb the phase equilibria solid liquid causing excess attenuation and velocity dispersion. The magnitude of this effect depends on the ultrasonic frequency and the average droplet size. 相似文献
10.
The phase inversion that undergoes an emulsion while being sheared is a sudden phenomenon that is still puzzling. In this Letter, we report an experimental investigation on propagative coalescence by using a microfluidic device where a calibrated two-dimensional emulsion is created and destabilized. The velocity of propagation and the probability of the coalescence are reported as a function of the size and the spatial distribution of the drops, respectively. We then discuss the efficiency of this novel scenario of phase inversion and suggest that inversion can be favored by the existence of a drop size distribution. 相似文献
11.
The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time. 相似文献
12.
Dynamics of multiphase flow under high voltage has attracted extensive research interests due to its wide industrial applications. In this paper, numerical solution of electro-hydrodynamic behavior and interface instability of double emulsion droplet is presented. Level set method and leaky dielectric model coupled with Navier-Stokes equation are used to solve the electro-hydrodynamic problem. The method is validated against the theoretical analysis and the simulation results of the other researchers. Double emulsion droplet with inner droplet (core) and outer droplet (shell) phases immersed in continuous phase is subjected to high electric field. Shell/continuous and core/shell interfaces of the droplet undergo prolate-oblate or oblate-prolate deformation depending on the extent of the penetration of electric potential and sense of charge distribution at the interfaces. The deformation of the shell deviates from theory at larger volume fraction of core for oblate-prolate case whereas it follows theory for prolate-oblate case. The interfaces showing oblate-prolate deformation split at the poles whereas, for prolate-oblate, they split away along the equator. The re-union of the interfaces under high electric field results with production of daughter droplet at the core. The large decrease in critical electric field for oblate-prolate case shows their less interface stability at larger volume fraction of core. When the core is eccentric, the electric field drives it towards the shell center or to the shell/continuous interface depending on electrical parameters. The study is beneficial in understanding the electro-hydrodynamic behavior of emulsion droplets and efficient design of related industrial processes. 相似文献
13.
In this study, comparative assessment of the technical performance, energy usage and economic impact of ultrasound, electrostatics and microwave on the coalescence of binary water droplets in crude oil was conducted. The effect of different oil properties such as crude oil viscosity (10.6–106 mPa s) and interfacial tension (IFT) (20–250 mN/m) on the coalescence time and energy consumption was examined. In addition, operation conditions such as inlet emulsion flow velocity (10–100 mm/s), electric field type, ultrasound frequency and applied voltage amplitude (0–30 kV) were evaluated. The numerical models showed good agreement with experimental findings in the literature. Moreover, the process time of the dewatering process increased with rising inlet flow velocities. The elevation of the coalescence time with velocity can be attributed to the increasing effect of flow disturbance, and the reduction of the emulsion residence time. As regards the IFT, the coalescence time reduced as the IFT was increased. This can be associated with the improved stability of emulsions formed at lowered IFT. As the maximum droplet size is directly proportional to the IFT, lowering the IFT reduces the peak diameter of the droplets that are present in the emulsion. Moreover, the coalescence time followed the order: ultrasound < microwave < electrostatics approaches under varying IFT. The coalescence energy increased from ∼15 J, ∼90 J and ∼25 mJ to ∼61 J, ∼235 J and ∼26 mJ for microwave, electrostatics and ultrasound techniques, respectively, as the viscosity was raised from 10.6 to 106 mPa s. Ultrasound coalescence showed significant energy and economic savings in comparison to microwave and electro-coalescence. Hence, ultrasound coalescence would be a potential method for standalone or integrated demulsification over the two other techniques. However, there are indications that beyond a viscosity of 300 mPa s, the effect of ultrasound becomes weak with significant hindrance to droplet movement and accumulation. This analysis provides fundamental insights on the comparative behavior of the three emulsion separation techniques. 相似文献
14.
15.
Towata A Sivakumar M Yasui K Tuziuti T Kozuka T Iida Y 《Ultrasonics sonochemistry》2007,14(6):705-710
The paraffin particles were prepared by quenching process after sonicating the solution of paraffin and water at 80 °C. The resultant paraffin particles were then used as template for the preparation of macroporous zirconia materials. For this, zirconium normal butoxide (ZNB) modified with triethanolamine (TEA) was first hydrolyzed by water containing the dispersed paraffin particles with the surfactant, Sodium di(2-ethylhexyl) sulfosuccinate. This resulted in the formation of a slurry consisting of hydrolyzed sol and paraffin particles. After centrifugation, a cake packed with hydrated sol and paraffin particles were obtained which was then subjected to heat treatment. The sample obtained after heat treatment contained finely dispersed pores in the size range from 40 nm to 2 μm. Moreover, using the present approach it has also been observed that, change in pore size of zirconia wall is possible with a change in size of the paraffin particles. Thus, the present approach is a novel way of producing porous materials as the particle size of the template could be changed and templates become hard when they were molded as compared to the conventional methods in which there is no change in phase for the templates under 100 °C. 相似文献
16.
Abstract Pressure release freezing (PRF) of an oil-in-water emulsion is studied. The characteristics of ice crystals as a function of freezing process is studied. 相似文献
17.
We study droplet coalescence in a molecular system with a variable viscosity and a colloid-polymer mixture with an ultralow surface tension. When either the viscosity is large or the surface tension is small enough, we observe that the opening of the liquid bridge initially proceeds at a constant speed set by the capillary velocity. In the first system we show that inertial effects become dominant at a Reynolds number of about 1.5+/- 0.5 and the neck then grows as the square root of time. In the second system we show that decreasing the surface tension by a factor of 10(5) opens the way to a more complete understanding of the hydrodynamics involved. 相似文献
18.
Fullerene coalescence experimentally found in fullerene-embedded single-wall nanotubes under electron-beam irradiation or heat treatment is simulated by minimizing the classical action for many atom systems. The dynamical trajectory for forming a (5,5) C120 nanocapsule from two C60 fullerene molecules consists of thermal motions around potential basins and ten successive Stone-Wales-type bond rotations after the initial cage-opening process for which energy cost is about 8 eV. Dynamical paths for forming large-diameter nanocapsules with (10,0), (6,6), and (12,0) chiral indexes have more bond rotations than 25 with the transition barriers in a range of 10-12 eV. 相似文献
19.
Dénes Molnár 《Acta Physica Hungarica A》2005,22(3-4):271-279
The influence of spacetime dynamics in hadronization via parton coalescence at RHIC is investigated using covariant parton transport theory: Key observables, the quark number scaling of elliptic flow and the enhancement of the p/π ratio, show strong dynamical effects and differ from earlier results based on the simple coalescence formulas. 相似文献
20.