首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.  相似文献   

2.
The neutral oxygen vacancy (OV) energy formation for bulk, subsurface sites at different depths from the surface and various surface sites has been estimated for single crystals, unsupported ultrathin films of MgO, CaO, and BaO, and MgO ultrathin films supported on Ag(001). From the calculated energy barriers for diffusion through the surface and from the surface to the bulk it is found that diffusion is a hindered event, especially for MgO. Nevertheless, diffusion from the terrace to step edges is largely favored while diffusion through terrace sites is less likely and surface to bulk has a very low probability. It is argued that this explains recent scanning tunneling microscopy images for MgO thin films supported on Ag(001) showing OV populating preferentially the step edge sites.  相似文献   

3.
Using density functional calculations, we demonstrate a catalytic reaction path with activation barriers of less than 0.5 eV for CO oxidation on the neutral and unsupported icosahedral nanoclusters of Au(55), Ag(55), and Au(25)Ag(30). Both CO and O(2) adsorb more strongly on these clusters than on the corresponding bulk surfaces. The reaction path consists of an intermediate involving OOCO complex through which the coadsorption energy of CO and O(2) on these clusters is expected to play an important role in the reaction. Based on the studies for the Au and Ag nanoclusters, a model alloy nanocluster of Au(25)Ag(30) was designed to provide a larger coadsorption energy for CO and O(2) and was anticipated to be a better catalyst for CO oxidation from energetic analysis.  相似文献   

4.
Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS(2) clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).  相似文献   

5.
We report a first-principles, periodic supercell analysis of oxygen adsorption, diffusion, and dissociation at the kinked Pt(321) surface. Binding energies and binding site preferences of isolated oxygen atoms and molecules have been determined, and we show that both atomic and molecular oxygen prefer binding in bridge sites involving coordinatively unsaturated kink Pt atoms. Binding energies of atomic and molecular oxygen in different sites correlate well with the average metallic Pt coordination number of Pt atoms forming each site, although differences exist between adsorbates in symmetrically similar sites due to the inherent chirality of the surface. Atomic O in the strongest binding bridge sites experiences relatively small energy barriers for diffusion to neighboring sites compared to O on Pt(111). However, due to the structure of the surface, O diffusion is only rapid between different sites around the kink Pt atom, whereas the effective long-range tracer diffusion, as determined from a simple course-grain model, is shown to be anisotropic and slower than on the Pt(111) surface. Four dissociation pathways for O(2) at low coverage are also reported and found to be in agreement with experimental observations of facile dissociation, even at low temperature.  相似文献   

6.
Single-atom catalysts provide a pathway to elucidate the nature of catalytically active sites. However, keeping them stabilized during operation proves to be challenging. Herein, we employ cryptomelane-type octahedral molecular sieve nanorods featuring abundant manganese vacancy defects as a support, to periodically anchor single-atom Ag. The doped Ag atoms with tetrahedral coordination are found to locate at cation substitution sites rather than being supported on the catalyst surface, thus effectively tuning the electronic structure of adjacent manganese atoms. The resulting unique Ag–O–MnOx unit functions as the active site. Its turnover frequency reaches 1038 h−1, one order of magnitude higher than for previously reported catalysts, with 90% selectivity for anti-Markovnikov phenylacetaldehyde. Mechanistic studies reveal that the activation of styrene on the ensemble site of Ag–O–MnOx is significantly promoted, which can accelerate the oxidation of styrene and, in particular, the rate-determining step of forming the epoxide intermediate. Such an extraordinary electronic promotion can be extended to other single-atom catalysts and paves the way for their practical applications.

Manganese vacancy-confined single-atom Ag in cryptomelane nanorods efficiently catalyses Wacker oxidation of styrene derivatives.  相似文献   

7.
基于密度泛函理论(DFT)计算研究了O3在完整和具有氧空位的CuO(111)表面吸附的吸附位、吸附结构、吸附能和电子转移情况,比较了O3在完整表面和具有氧空位的表面分解的路径和能垒,分析了氧空位和表面吸附氧的生成机理。结果表明,在完整CuO表面,O3分子通过化学吸附或物理吸附表面结合,吸附能最高为-1.22eV(构型bri(2))。O3在具有氧空位的CuO表面均为化学吸附,吸附能最高为-2.95eV(构型ovbri(3)),显著高于完整表面的吸附能。O3吸附后,Cu吸附位的电荷密度减小,O3中的O原子附近的电荷密度显著增强,电荷从CuO表面转移到O3,并形成Cu-O离子键。O3分解后形成了超氧物种,提高了表面的氧化活性。在完整表面,以构型bri(2)为起始构型的路径反应能垒最低,为0.52eV;O2*在完整表面的脱附所需要的最低能量为0.42eV,形成氧空位的O2*脱附能为2.06eV。在具有氧空位的表面,O3分解的反应能垒为0.30eV(构型ovbri(1))和0.12eV(构型ovbri(3)),均低于完整表面的反应能垒;分解形成的O2*的最低脱附能也低于完整表面,为0.27eV。可见,氧空位的形成提高了吸附能,降低了反应能垒,使O3分子更容易吸附在CuO表面,并加快了O3的催化分解。  相似文献   

8.
邓华  余运波  贺泓 《催化学报》2015,(8):1312-1320
机动车污染物排放是我国大气复合污染形成的重要原因之一.尽管柴油车在我国机动车保有量中所占比例不到20%,但其排放的颗粒污染物(PM)和氮氧化物(NOx)分担率均超过60%.因此,控制柴油车尾气排放成为我国亟待解决的大气污染问题.目前,氨选择性催化还原NOx技术(NH3-SCR)已规模化应用于柴油车污染排放控制,出于安全性考虑,以尿素水溶液作为氨的来源.但NH3-SCR技术应用于柴油车尾气净化存在如下缺点:需要布建庞大的尿素添加基础设施、后处理系统复杂等.与此相反,以车载燃油为还原剂来源的HC-SCR技术可有效规避上述难题,展现了较好的应用前景.但是,直接以柴油为还原剂时, HC-SCR对NOx净化的效率还难以满足日益严格的排放法规的要求,因此需要深入研究HC选择性还原NOx的微观机制与构效关系,并以此为指导,发展以车载燃料为还原剂来源的高效净化NOx的新原理和新方法.已有的研究表明,银/氧化铝(Ag/Al2O3)具有优异的催化乙醇选择性还原NOx的能力,是最有希望应用于柴油车尾气NOx净化的催化剂-还原剂组合体系.鉴于此,本论文以Ag/Al2O3催化剂上乙醇-SCR反应为研究对象,以密度泛函理论计算方法(DFT)搭建了Ag/Al2O3催化剂的理论模型,考察了反应物乙醇(CH3CH2OH)、关键中间体(烯醇式物种CH2=CHO?和?NCO)在Ag/Al2O3催化剂上的吸附特征,采用电子态密度分析(DOS)研究了以上物种被活化的电子机制,以期甄别Ag/Al2O3催化乙醇选择性还原NOx的活性位结构,为高性能的HC-SCR催化剂设计提供指导.
  依据化学态的不同, Ag/Al2O3催化剂上活性组分银可分为:高度分散的离子态(Ag+、在催化剂表面以Ag?O形式存在)、部分氧化团簇(Agnδ+)和金属颗粒银(Agn0),其中氧化态的银是催化乙醇选择性还原NOx的活性组分. Al2O3载体的主要暴露晶面为(110)和(100),在上述晶面上Al的配位状态存在明显差异,显著影响了银物种的锚定与分散,形成了具有不同键合特征的Ag?O?Al结构.基于对Al2O3暴露晶面上Al配位状态的分析,搭建了6种Ag?O?Al结构模型.结合Al MAS NMR对Ag/Al2O3实际催化剂的表征结果和理论模型吸附能的分析,获得了最为可能的两种Ag?O?Al结构: Ag?O?Altetra(AlO4)和Ag?O?Alocta(AlO6);前者为AgO与Al2O3(110)面Altrip位键合形成的特征结构(Al最终为四配位),后者系AgO锚定于Al2O3(100)面Alpenta位的能量最优结构(Al最终为六配位).
  在Ag?O?Altetra上, Altetra位具有较强的酸性, Ag、Al原子轨道的杂化融合有利于电子转移;以上特性促进CH3CH2OH、CH2=CHO?、?NCO的吸附活化.在HC-SCR反应中,关键中间体?NCO通过与NOx直接反应可形成最终产物N2和CO2.可见,?NCO中N=C键的拉伸活化、断裂对上述反应的发生至关重要.由电子态密度分析可知, N=Cσ键能向Ag?O?Altetra中Altetra位转移电子,而Ag与Al的轨道融合能反馈电子到N=C π键;在这两种电子转移机制作用下,?NCO中的N=C键被最大程度弱化,有利其断裂,转化为最终产物N2和CO2.而Ag?O?Alocta上,并没有N=C键的活化拉伸,反而呈现出N=C键收缩趋势,不利于N=C键的断裂与最终产物的形成.由此推定, Ag?O?Altetra是Ag/Al2O3催化剂上HC-SCR反应的活性中心.  相似文献   

9.
Computational and experimental studies show that Fe(BPMEN)-catalyzed olefin oxidation has two (FeIII-OOH and FeV=O) oxidant species, which act with comparable activation barriers. The presence of water favors formation of an HO-FeV=O oxidant via water-assisted O-OH bond cleavage and leads to both epoxide and cis-diol products. In the absence of water, the oxidant is the FeIII-OOH [or (MeCN)FeIII-OOH], and oxidation mainly leads to epoxide. This conclusion differs from that derived from DFT investigations of iron-porphyrin-catalyzed olefin epoxidation, where the FeIII-OOH pathway is deemed too high in energy to be plausible. The difference between these two systems may lie in the more flexible coordination environment of the non-heme iron complex, which has an available adjacent coordination site that contributes to the activation of the peroxide in both wa and nwa pathways.  相似文献   

10.
The structural, energetic, and electronic properties of stoichiometric and defective Li(2)O were studied theoretically. The reliability of the Perdew-Wang method in the framework of density functional theory (DFT), and of two DFT/Hartree-Fock hybrid methods (PW1PW and B3LYP), was examined by comparison of calculated and available experimental data. Atom-centered orbitals and plane waves were used as basis functions for the crystalline orbitals. For both cases, the basis set dependence of calculated properties was investigated. With most of the methods, good agreement with the experimental Li(2)O lattice parameter and cohesive energy was obtained. In accordance with experiment, the analysis of electronic properties shows that Li(2)O is a wide gap insulator. Among the considered methods, the hybrid methods PW1PW and B3LYP give the best agreement with experiment for the band gap. The formation of an isolated cation vacancy defect and an F center in Li(2)O were studied. The effect of local relaxation on the calculated defect formation energies and the defect-induced changes of electronic properties were investigated and compared to available experimental results. The migration of a Li(+) ion in Li(2)O bulk was investigated. The activation energy for the migration of a Li(+) ion from its regular tetrahedral site to an adjacent cation vacancy was calculated, including the effect of local relaxation. The calculated activation barriers, 0.27-0.33 eV, are in excellent agreement with experiment.  相似文献   

11.
The adsorption of H(2)O and its dissociation products, O, H, and OH, on Ag(100) has been studied using an ab initio embedding method. Results at different sites (atop, bridge, and hollow) are presented. The four-fold hollow site is found to be the most stable adsorption site for O, H, and OH, and the calculated adsorption energies are 87.1, 42.7, and 76.2 kcal mol(-1), respectively. The adsorption energy of water at the atop and bridge sites is almost identical with values of 11.1 and 12.0 kcal mol(-1), respectively. The formation of adsorbed OH species by adsorption of water on oxygen-precovered Ag(100) is predicted to be exothermic by 36 kcal mol(-1).  相似文献   

12.
刘平  蒋益明  郭峰  谢亨博  李劲 《物理化学学报》2005,21(10):1073-1075
采用真空蒸发的方法在玻璃基板上交替蒸发Ag和TCNQ(四氰基对醌二甲烷), 形成不同厚度的双层膜, 经Ag的固体化学扩散与TCNQ反应, 形成金属有机络合物. 利用透射光谱作为表征, 研究了Ag的传质规律, 给出了60~110 ℃温度下的恒温传质系数k和对应的激活能, 并对传质机制进行了探讨.  相似文献   

13.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

14.
Reactions between the three components Ag2O, V2O5, and HF(aq) were investigated under hydrothermal conditions, and the recovered phases were, in increasing Ag:V content, Ag2V4O11, beta-AgVO3, Ag4V2O6F2, Ag4V2O7, and alpha-Ag3VO4. A higher ratio of Ag2O to V2O5, as compared to a stoichiometric ratio, was required to synthesize Ag4V2O6F2, Ag4V2O7, and alpha-Ag3VO4. Owing to their solubility differences, the crystallization regions are not centered around the respective 2:1 and 3:1 Ag2O/V2O5 tie-lines but rather are centered along the 4:1 and 8:1 Ag2O/V2O5 tie-lines. Reactions with a 4:1 Ag/V ratio either resulted in Ag4V2O6F2 at 150 degrees C or Ag4V2O7 at 200 degrees C. Products were recovered in between 80% and 100% yield based on V2O5. Red transparent crystals of alpha-Ag3VO4 crystallize in the monoclinic space group C2/c, with cell parameters a = 10.1885(16) A, b = 4.9751(8) A, c = 10.2014(17) A, beta = 115.754(3) degrees .  相似文献   

15.
表面辅助的金属有机纳米结构因其结构稳定性和潜在应用受到广泛关注。在金属有机纳米结构中,金属原子来源于外部沉积的金属或金属表面原子。外部沉积的金属原子种类多样,取决于目标纳米结构。然而,金属表面原子受限于表面科学常用的金、银和铜单晶金属表面。金属有机纳米结构大多包括Au配位或是Cu配位结构,而只有少量的用表面Ag原子构成。分子金属相互作用的进一步研究有助于预期纳米结构的精确控制形成。至于构建基元,有机分子通过M―C、M―N和M―O键与表面金属原子配位。末端炔反应或者乌尔曼耦合能够实现C―M―C节点的形成。Cu和Au原子能够与含有末端氰基或吡啶基官能团的分子配位形成N―M―N键。另外,表面Ag增原子能够通过Ag―N配位键与酞菁分子配位。然而,M―O配位键的相关研究较少。因此,我们计划使用末端羟基分子与Ag增原子配位形成金属有机配位纳米结构去研究O―Ag节点。我们通过扫描隧道显微镜利用4, 4’-二羟基-1, 1’: 3’, 1’’-三联苯分子(4, 4’-dihydroxy-1, 1’: 3’, 1’’-terphenyl,H3PH)和Ag增原子成功构筑了一系列二维有序纳米结构。在室温下,蒸镀的H3PH分子自组装形成由环氢键连接的密堆积结构。当退火温度提升到330 K,一种新的纳米结构出现了,该结构由O―Ag配位键和氢键共同作用形成。进一步地提升退火温度至420 K,蜂巢结构和共存的二重配位链出现,这两种结构中仅由O―Ag―O键构成。为分析金属分子反应路径和O―Ag―O键的能量势垒,我们对该体系进行密度泛函理论计算。计算结果显示,O―Ag键形成的能量势垒是1.41 eV,小于O―Ag―O节点1.85 eV的能量势垒。这也解释了分等级金属-有机纳米结构形成的原因。我们的实验结果提供了一种利用有机小分子和金属增原子来设计和构筑分等级二维纳米结构的有效方法。  相似文献   

16.
1 INTRODUCTION The interaction of hydrogen with metal surfaces has been extensively investigated experimentally and theoretically[1] motivated by its technological im- portance as well as theoretical attractiveness. Studies have sought to identify and explain the induced struc- tural, electronic and chemical perturbations which accompany hydrogen physisorption and chemisorp- tion on well-characterized metal substrates. However, the interaction of hydrogen atoms with Ag surfaces has not r…  相似文献   

17.
Electron paramagnetic resonance (EPR), optical absorption, and FT-IR spectra of vanadyl ions in the sodium-lead borophosphate (Na(2)O-PbO-B(2)O(3)-P(2)O(5)) (SLBP) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO(2+) ions. The spin Hamiltonian parameters g and A are found to be independent of the V(2)O(5) content and temperature. The values of the spin Hamiltonian parameters indicate that the VO(2+) ions in SLBP glasses are present in octahedral sites with tetragonal compression. The population difference between Zeeman levels (N) is calculated as a function of temperature for an SLBP glass sample containing 1.0 mol % VO(2+) ions. From the EPR data, the paramagnetic susceptibility (χ) is calculated at different temperatures, and the Curie constant (C) is calculated from the 1/χ versus T graph. The optical absorption spectra of the glass samples show two absorption bands, and they are attributed to V(3+) and V(4+) ions. The optical band gap energy (E(opt)) and Urbach energy (ΔE) are calculated from their ultraviolet absorption edges. It is observed that, as the vanadium ion concentration increases, E(opt) decreases and ΔE increases. The study of the IR absorption spectrum depicts the presence of BO(3), BO(4), PO(3), PO(4), and VO(5) structural units.  相似文献   

18.
A series of new silver(I)-containing MOFs [Ag(2)(tr(2)ad)(2)](ClO(4))(2) (1), [Ag(2)(VO(2)F(2))(2)(tr(2)ad)(2)]·H(2)O (2), [Ag(2)(VO(2)F(2))(2)(tr(2)eth)(2)(H(2)O)(2)] (3), and [Ag(2)(VO(2)F(2))(2)(tr(2)cy)(2)]·4H(2)O (4) supported by 4-substituted bifunctional 1,2,4-triazole ligands (tr(2)ad = 1,3-bis(1,2,4-triazol-4-yl)adamantane, tr(2)eth = 1,2-bis(1,2,4-triazol-4-yl)ethane, tr(2)cy = trans-1,4-bis(1,2,4-triazol-4-yl)cyclohexane) were hydrothermally synthesized and structurally characterized. In these complexes, the triazole heterocycle as an N(1),N(2)-bridge links either two adjacent Ag-Ag or Ag-V centers at short distances forming polynuclear clusters. The crystal structure of compound 1 is based on cationic {Ag(2)(tr)(4)}(2+) fragments connected in a 2D rhombohedral grid network with (4,4) topology. The neighboring layers are tightly packed into a 3D array by means of argentophilic interactions (Ag···Ag 3.28 ?). Bridging between different metal atoms through the triazole groups assists formation of heterobimetallic Ag(I)/V(V) secondary building blocks in a linear V-Ag-Ag-V sequence that is observed in complexes 2-4. These unprecedented tetranuclear {Ag(2)(VO(2)F(2))(2)(tr)(4)} units (the intermetal Ag-Ag and Ag-V distances are 4.24-4.36 and 3.74-3.81 ?, respectively), in which vanadium(V) oxofluoride units possess distorted trigonal bipyramidal environment {VO(2)F(2)N}ˉ, are incorporated into 1D ribbon (2) or 2D square nets (3, 4) using bitopic μ(4)-triazole ligands. The valence bond calculation for vanadium atoms shows +V oxidation state in the corresponding compounds. Thermal stability and photoluminescence properties were studied for all reported coordination polymers.  相似文献   

19.
We have synthesized and characterized new layered perovskites Ag2[A1.5M3O10] (A = Ca, M = Nb, Ta), from their lithium analogues, by soft-chemical ion exchange. These oxides show topotactic irreversible thermally induced A'-A site exchange, resulting in Ag1.1Ca0.9[Ca0.6Ag0.9M3O10], conferred from our high-temperature X-ray and ionic conductivity studies. The latter phases are the first compounds where Ag+ ions reside in both A' and A sites in layered perovskites. The absence of similar phase transition for A = Sr suggests that these transitions strongly depend on the size, charge, and the coordination preference of A' and A cations. This result provides a new synthetic tool for modifying the occupation of the 12-coordinate A site of layered perovskites using soft chemical routes.  相似文献   

20.
The O-Ag(210)surface adsorption system was studied via the five-parameter Morse potential theory.Meanwhile,the 2O-Ag(210)system was investigated via the extended London-Eyring-Polanyi-Sato(LEPS)potential theory to learn the interaction between the adsorption states.Calculated results demonstrate that there are two stable on-surface adsorption sites(B and H)for O atoms on Ag(210)stepped surface.And the perpendicular vibrations are 30.3 and 42.9 meV,which are close to that observed in high resolution electron energy loss spectroscopy(HREELS).Also,there exists an octahedral subsurface adsorption state with a high vibrational frequency,and the interaction between the on-surface and subsurface O species is slight.The mode at 54.6 meV,which is close to that observed in HREELS(54-56 meV),is because of the vibration of the O atom on B site under the influence of that on H site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号