首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrothermal synthesis, crystal structure and some properties of a zinc phosphite with a neutral cluster, [Zn(2,2′-bipy)]2(H2PO3)4, are reported. This compound crystallizes in the triclinic system of space group P-1 (No. 2), a=8.3067(5) Å, b=8.9545(4) Å, c=10.0893(6) Å, α=95.448(2)°, β=99.7530(10)°, γ=103.461(2)°, V=712.23(7) Å3, Z=1. The cluster consists of 4-membered rings formed by alternating ZnO3N2 square pyramids and H2PO3 pseudo pyramids, with two “hanging” H2PO3 groups attached to each of the Zn centers. The clusters are linked together by extensive multipoint hydrogen bonding involving the phosphite units to form a sheet-like structure. This compound represents the first example of zinc phosphite with P---OH bonds. An intense photoluminescence was observed from this compound upon photoexcitation at 388 nm.  相似文献   

2.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

3.
The crystal structure of the title compound was determined (crystal data at 143 K: triclinic, space group P−1, Z=4, a=9.538(2) Å, b=11.638(2) Å, c=14.473(2) Å, α=88.647(3)°, β=89.875(3)°, γ=83.835(3)°, V=1596.9(4) Å3). In the crystal there exist two kinds of tetrameric O–HO hydrogen-bond (H-bond) systems that are quite similar to each other. The oxygen atoms accept also intermolecular C–HO H-bonds. The two types of the H-bonds connect the molecules to an infinite two-dimensional supramolecular unit, the stacking of which is aided by an intermolecular C–Hπ H-bond. A phase transition with ΔHt=4.4±0.1 kJ/mol was found at around 420 K.  相似文献   

4.
Two three-dimensional open-framework zinc phosphites, H2aem·Zn3(HPO3)4·0.5H2O (1) and H2apm·Zn3(HPO3)4 (2), have been synthesized by a phosphorous acid flux method, where aem=4-(2-aminoethyl)morpholine and apm=4-(3-aminopropyl)morpholine. Compound 1 crystallizes in the monoclinic system, P21/c, a=9.5852(7) Å, b=20.3941(8) Å, c=10.5339(8) Å, β=94.125(9)°, V=2053.8(2) Å3, Z=4, R1=0.0319, wR2=0.0628. Compound 2 crystallizes in the monoclinic system, P21/n, a=8.589(2) Å, b=14.020(3) Å, c=16.606(3) Å, β=97.190(8)°, V=1983.9(7) Å3, Z=4, R1=0.0692, wR2=0.1479. Both compounds are based on (3,4)-connected networks with 8- and 12-ring channels, which are constructed from Zn3(HPO3)4 clusters as the same secondary building units. These inorganic clusters are spatially organized by different structure-directing agents into different three-dimensional frameworks.  相似文献   

5.
The hydrothermal reaction of 3,5-pyridinedicarboxylic acid (pydcH2) and Co(NO3)2 or Ni(NO3)2 in the presence of 4,4′-bipyridine results in two novel compounds Co(pydc)(H2O)2 (1) and Ni(pydc)(H2O) (2). Crystal data: 1, monoclinic, C2/c, a=9.900(2), b=11.984(2), c=7.3748(15) Å, β=105.37(3)°, V=843.7(3) Å3, Z=4; 2, monoclinic, P21/c, a=7.7496(6), b=15.0496(11), c=6.4224(5) Å, β=108.437(1)°, V=710.59(9) Å3, Z=4. The structure of 1 is composed of honeycomb layers built up from {CoO4N} trigonal bipyramids and 3,5-pyridinedicarboxylate bridges. The structure of 2 adopts a three-dimensional framework structure in which the Ni atoms are coordinated by the pydc bridges both within the honeycomb layer and between the layers. The magnetic properties of 1 and 2 have been investigated.  相似文献   

6.
The crystal structure of dilithium piperazinium(2+) selenate tetrahydrate has been solved; this substance crystallizes in the triclinic space group , a=7.931(2) Å, b=7.974(2) Å, c=7.991(2) Å, α=106.99(2)°, β=101.83(2)°, γ=119.28(2)° Z=1, R=0.0280 for 1489 observed reflections. A similar compound, dilithium N,N′-dimethylpiperazinium(2+) selenate tetrahydrate crystallizes in a monoclinic system with space group P21/c and lattice parameters a=7.338(1) Å, b=8.792(2) Å, c=12.856(1) Å, β=92.04(2)°, Z=2, R=0.0334 for 1462 observed reflections. Both structures are centrosymmetric with center of symmetry in the center of eight membered ring formed with two SeO4 tetrahedra and two LiO4 tetrahedra connected through tops. The two remaining oxygens on each Li atom come from water molecules. The FTIR and FT Raman spectra of both natural and N,O-deuterated substances have been measured and studied. The thermoanalytical properties were studied using TG, DTG and DTA methods in the temperature range 293–873 K for piperazinium derivative and in the range 293–523 K for dimethylpiperazinium derivative. DSC measurements were carried out in the temperature range 95–343 K. No phase transition was found in this temperature region for either of the compounds.  相似文献   

7.
A crystallographic investigation of anion–π interactions and hydrogen bonds on the preferred structural motifs of molybdenum(VI) complexes has been carried out. Two molybdenum(VI) network polymers MoO2F4·(Hinca)2 (1) and MoO2F3(H2O)·(Hinpa) (2), where inca = isonicotinamide and inpa = isonipecotamide, have been synthesized, crystallographically characterized and successfully applied to alcohol oxidation reaction. Complex 1 crystallizes in the monoclinic space C2/c: a = 16.832(3) Å, b = 8.8189(15) Å, c = 12.568(2) Å, β = 118.929(3)°, V = 1560.1(5) Å3, Z = 4. Complex 2 crystallizes in the triclinic space P-1: a = 5.459(2) Å, b = 9.189(4) Å, c = 12.204(5) Å, α = 71.341(6)°, β = 81.712(7)°, γ = 77.705(7)°, V = 564.8(4) Å3, Z = 2. Complex 1 consists of hydrogen bonding and anion–π interactions, both of which are considered as important factors for controlling the geometric features and packing characteristics of the crystal structure. The geometry of the sandwich complex of [MoO2F4]2− with two pyridine rings indicates that the anion–π interaction is an additive and provides a base for the design and synthesis of new complexes. For complex 2, the anions and the protonated inpa ligands form a 2D supramolecular network by four different types of hydrogen contacts (N–HF, N–HO, O–HF and O–HO). The catalytic ability of complexes 1 and 2 has also been evaluated by applying them to the oxidation of benzyl alcohol with TBHP as oxidant.  相似文献   

8.
In the presence of CoCl2·6H2O and dppm (bis(diphenylphosphino) methane), the reaction of TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules by [2+2] cycloaddition forms a p-tricyanovinylphenyldicyanomethide ion (PCQ), which has been obtained as one anion unit in one new compound [Co(dppmdo)3][PCQ]2·H2O 1 (dppmdo = bis(diphylphospine oxide) methane). Its structure was determined by X-ray crystallography: 1 crystallizes in with a = 14.174(3) Å, b = 19.553(4) Å, c = 19.776(4) Å, α = 112.72(3)°, β = 95.43(3)°, γ = 110.79(3)°, and Z = 2. It was characterized by IR spectra, UV–Vis spectra, and cyclic voltammogram. Magnetic properties indicate that no magnetic coupling between PCQ and [Co(dppmdo)3]2+ unit.  相似文献   

9.
The novel aluminum ethylenediphosphonate fluoride, [HN(CH2CH2NH3)3][Al2(O3PCH2CH2PO3)2F2]·H2O (1) (monoclinic, P21/n, a=12.145(4) Å, b=9.265(3) Å, c=20.422(6) Å, β=104.952(4)°, Z=3, R1=0.092, wR2=0.196) has been synthesized by solvothermal methods in the presence of tris(2-aminoethyl)amine and its structure determined using single microcrystal X-ray diffraction data. Compound 1 is a one-dimensional extended chain structure composed of well-separated anionic [Al2(O3PCH2CH2PO3)2F2]4− rods containing helical chains of corner-shared cis-AlO4F2 octahedra at their core. The charge-compensating tris(2-aminoethyl)ammonium cations separate the anionic [Al2(O3PCH2CH2PO3)2F2]4− rods that contain either left- or right-handed helical chains. The incorporation of the organic components into this hybrid material has aided the adoption of one-dimensionality by the compound and defined the pitch of the helical AlO4F chain.  相似文献   

10.
The crystal structure of piperazinium(2+) selenate monohydrate has been resolved; this substance crystallizes in the monoclinic space group P21/n, a=6.4586(8), b=11.8335(7), c=11.8065(7) Å, β=100.990(8)°; V=885.80(13) Å5, Z=4, R=0.0446 for 1556 observed reflections. A similar compound, N,N′-dimethylpiperazinium(2+) selenate dihydrate, crystallizes in a triclinic system with space group P and lattice parameters a=6.7370(8), b=7.9845(9), c=12.3802(12) Å, α=92.435(9)°, β=100.219(9)°, γ=114.699(10)°; V=590.34(11) Å3, Z=2, R=0.0311 for 2071 observed reflections. While, in the former structure, the cations of piperazinium(2+) in the chair conformation are arranged roughly plane-parallel above one another, in the second substance, the N,N′-dimethylpiperazinium (2+) ions lie approximately perpendicularly above one another. The FTIR and FT Raman spectra of both test substances have been measured and studied. The thermoanalytical properties were studied using TG, DTG, and DTA methods in the temperature range 293–533 K. DSC measurements were carried out in the temperature range 95–343 K. No phase transition was found in this temperature region for either of the compounds.  相似文献   

11.
A new layered gallium phosphate Ga10(PO4)2(HPO4)12(OH)52.5N4C6H204.5H2O was hydrothermally synthesized at 180 °C for 3 days by using triethylenetetramine (teta) as structure-directing agent. Its structure was determined by single-crystal X-ray diffraction with a triclinic cell in the space group P-1 (no 2) with a=8.4718(1) Å, b=18.5915(1) Å, c=24.1994(3) Å, α=110.538(1)°, β=93.656(1)°, γ=93.549(1)° and V=3547.45(6) Å3. It consists of [Ga10(PO4)2(HPO4)12(OH)5]5− macroanionic sheets composed of infinite chains of GaO4(OH)2 octahedra connected via corner-sharing to PO4 and GaO4 tetrahedra. They contain four-, seven- and nine-membered rings. The inorganic layers are held together through hydrogen bond between the terminal PO bondings, the water molecules and the terminal ammonium groups of the intercalated teta molecules.  相似文献   

12.
A new mixed Mo/Ni/Ti heteropoly compound [C5H5NH]5 [(NiOH)2Mo10O36(PO4)Ti2] has been hydrothermally synthesized and structurally determined by the single-crystal X-ray diffraction. Black prismatic crystals crystallize in the monoclinic system, space group P2(1)/n, a=11.2075(2), b=37.8328(5) c=13.0888(1) Å, β=101.4580(10)°, M=2276.13, V=5439.19(13) Å3, Z=4. Data were collected on a Siemens SMART CCD diffractometer at 293(2) K in the range of 1.68<θ<25.09° using the ω-scan technique (λ=0.71073 Å R(F)=0.0872 for 9621 reflections). The title compound contains a trimetal heteropolyanion polymer and “trans-titanium”-bridging pseudo-Keggin fragments linked to a chain.  相似文献   

13.
Detailed study on identification and thermal decomposition of solid title compounds 1 and 2 crystallized from the used aqueous ammonia solutions of Pd(NH3)2(NO2)2 and Pt(NH3)2(NO2)2, has been carried out. Beyond the composition of complexes 1 and 2, their trans square planar configuration have already been recognized by reference IR spectra and powder XRD patterns, nevertheless their exact molecular and crystal structure as of trans-Pd(NH3)2(NO2)2 (1, Pd-NN) and trans-Pt(NH3)2(NO2)2 (2, Pt-NN) has been determined by single crystal X-ray diffraction (R = 0.0515 and 0.0341), respectively. Despite their compositional and configuration analogy, they crystallize in different crystal systems and space groups. The crystals of 1 (Pd-NN) are triclinic (space group No. 2, P-1, a = 5.003(1) Å, b = 5.419(1) Å, c = 6.317(1) Å, α = 91.34(2)°, β = 111.890(10)°, γ = 100.380(10)°), while those of 2 (Pt-NN) are monoclinic (space group No. 5, C2, a = 7.4235(16) Å, b = 9.130(2) Å, c = 4.4847(10) Å, β = 99.405(7)°).The pyrolytic processes of 1 and 2 (which might be sensitive to shock and heat) have been followed by simultaneous thermogravimetric and differential thermal analysis (TG/DTA), while the evolved gaseous species have been traced in situ by online coupled TG/DTA–EGA–MS and TG–EGA–FTIR instruments in He and air. Pd and Pt powders, forming as final solid products in single step, are captured and checked by TG and XRD. Whilst the unified evolved gas analyses report evolution of N2, H2O, NH3, N2O, NO, and NO2 gases as gaseous product components in the exothermic decomposition of both trans-Pd(NH3)2(NO2)2 (1) and trans-Pt(NH3)2(NO2)2 (2) starting from ca. 230 and 220 °C, in sealed crucibles with a pinhole on the top, respectively.  相似文献   

14.
The crystal structures of 1,4-diazabicyclo[2.2.2]octane (dabco)-templated iron sulfate, (C6H14N2)[Fe(H2O)6](SO4)2, were determined at room temperature and at −173 °C from single-crystal X-ray diffraction. At 20 °C, it crystallises in the monoclinic symmetry, centrosymmetric space group P21/n, Z=2, a=7.964(5), b=9.100(5), c=12.065(5) Å, β=95.426(5)° and V=870.5(8) Å3. The structure consists of [Fe(H2O)6]2+ and disordered (C6H14N2)2+ cations and (SO4)2− anions connected together by an extensive three-dimensional H-bond network. The title compound undergoes a reversible phase transition of the first-order at −2.3 °C, characterized by DSC, dielectric measurement and optical observations, that suggests a relaxor–ferroelectric behavior. Below the transition temperature, the compound crystallizes in the monoclinic system, non-centrosymmetric space group Cc, with eight times the volume of the ambient phase: a=15.883(3), b=36.409(7), c=13.747(3) Å, β=120.2304(8)°, Z=16 and V=6868.7(2) Å3. The organic moiety is then fully ordered within a supramolecular structure. Thermodiffractometry and thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the iron oxide.  相似文献   

15.
The hydrothermal synthesis, single crystal structure, and some physical properties of Ba2(VO2)(PO4)(HPO4)·H2O, a new barium vanadium(V) phosphate hydrate, are reported. This phase is built up from one-dimensional chains of unusual VO5trigonal bipyramids and (H)PO4tetrahedra, fused together via V–O–P linkages. These anionic chains propagate along the polar [010] direction. 11-Coordinate barium cations and water molecules occupy the interchain regions and link the chains together. Structural data for this phase and other known barium vanadium phosphates are briefly compared. Crystal data: Ba2(VO2)(PO4)(HPO4)·H2O,Mr=566.57, monoclinic, space groupP21(No. 4),a=5.0772(5) Å,b=8.724(2) Å,c=10.806(1) Å,β=90.795(8)°,V=478.6(1) Å3,Z=2,R=2.65%,Rw=2.89% [147 parameters, 1893 observed reflections withI>3σ(I)].  相似文献   

16.
Ternary copper(II) complexes [Cu(l-pro)(B)(H2O)](NO3) (1, 2) where l-pro = l-proline, B is a N,N-donor heterocyclic base, viz. 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), are synthesized, characterized, and their DNA binding and cleavage activity studied. The bpy complex (1) is structurally characterized by single-crystal X-ray crystallography. The complexes show the presence of a distorted square-pyramidal (4 + 1) CuN3O2 coordination geometry. Complex [Cu(l-pro)(bpy)(H2O)](NO3) (1) crystallizes in the triclinic space group P1 with unit cell parameters: a = 7.082(3) Å, b = 10.483(5) Å, c = 11.581(5) Å, α = 89.700(7)°, β = 83.488(8)°, γ = 84.109(8)° and V = 849.7(7) Å3. The one-electron paramagnetic complexes display a d–d band near 600 nm in water and show a cyclic voltammetric response due to Cu(II)/Cu(I) couple near 0.1 V (versus SCE) in Tris–HCl buffer–0.1 M KCl. Binding interactions of the complexes with calf thymus (CT) DNA have been investigated by emission, absorption, viscosity and DNA thermal denaturation studies. The phen complex displays significant binding propensity to the CT DNA giving an order: 2 (phen)  1 (bpy). The bpy complex does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 2 shows efficient oxidative cleavage of SC-DNA in the presence of 3-mercaptopropionic acid (MPA) involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and catalase.  相似文献   

17.
A manganese sulfite of the formula Mn5(OH)4(SO3)3·2H2O, I{a=7.5759(7) Å, b=8.4749(8) Å, c=10.852(1) Å, β=100.732(2)°, Z=2, space group=P21/m (no. 11), R1=0.0399 and wR2=0.1121 [for R indexes I>2σ(I)]}, comprising Mn3O14 units and extended Mn–O–Mn bonds along the three dimensions has been synthesized under hydrothermal conditions. It has narrow channels along the b-axis and exhibits hydrogen storage of 2.1 wt% at 300 K and 134 bar.  相似文献   

18.
The closely related, narrowly non-stoichiometric, metastable as well as thermodynamically stable “phases” in the metal-rich part of the Ni–S phase diagram near the nominal composition NixS6 have been carefully re-investigated via electron diffraction and transmission electron microscope imaging. Two quite distinct polymorphs have been identified, a minority incommensurate interface-modulated polymorph and a (heavily twinned) majority I1a1, a=2ap, b=2bp, c=−ap+cp superstructure (of an underlying Bmmb, ap3.3, bp16.4, cp11.3 Å parent structure) polymorph. The incommensurate polymorph is shown to be very closely related to the only known polymorph of NixSe5 and is rapidly stabilized to room temperature upon doping of the sulfide compounds with selenium.  相似文献   

19.
A series of complexes of the type M(Phca2en)X2, where Phca2en=N,N′-bis(β-phenyl-cinnamaldehyde)-1,2-diiminoethane, M(II)=Co, Ni or Zn and X=Cl, Br, I or NCS have been synthesized and characterized. The crystal and molecular structures of Co(Phca2en)Cl2 (2), Ni(Phca2en)Br2 (5) and Zn(Phca2en)Cl2 (6) were determined by X-ray crystallography from single-crystal data. Complexes 2 and 5 are isomorph and isostructure, in which the coordination polyhedron about the central metal ion is distorted tetrahedron with Cl---Co---Cl, 110.17(6)°; N---Co---N, 84.16(13)° and Cl---Zn---Cl, 112.02(6)°; N---Zn---N, 83.45(16)°. The complex 5 crystallizes in triclinic system with two molecules per asymmetric unit, both having nickel ion in distorted tetrahedral geometry, Br---Ni---Br, 122.645(18)° and 125.729(18)°; N---Ni---N, 84.63(9)° and 85.08(9)°. These structures consist of intermolecular hydrogen bonds of the type C---HX. The formation of the C---HM weak intramolecular hydrogen bonds due to the trapping of C---H bonds in the vicinity of the metal atoms are reported for 2, 5 and 6. A 1H NMR study of Zn complexes gives further evidence for the presence of such interactions and their significance. The spectral properties of the above complexes are also discussed.  相似文献   

20.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号