首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ignition of a typical liquid fuel with a limited-energy source, a small metal particle heated to high temperature is numerically simulated with consideration given to the possible turbulization of the fuel vapor flow. The dependences of the integral ignition characteristics on the key parameters of the local heat source are established. The integral ignition characteristics, as well as the fields of fuel vapor concentrations and velocities predicted by models accounting for the laminar and turbulent modes of the vapor-oxidizer mixture flow are compared.  相似文献   

2.
Quan-Yuan Zeng 《中国物理 B》2022,31(4):46801-046801
The impact of droplets on the liquid film is widely involved in industrial and agricultural fields. In recent years, plenty of works are limited to dry walls or stationary liquid films, and the research of multi-droplet impact dynamic films is not sufficient. Based on this, this paper employs a coupled level set and volume of fluid (CLSVOF) method to numerically simulate two-droplet impingement on a dynamic liquid film. In our work, the dynamic film thickness, horizontal central distance between the droplets, droplets' initial impact speed, and simultaneously the flow velocity of the moving film are analyzed. The evolution phenomenon and mechanism caused by the collision are analyzed in detail. We find that within a certain period of time, the droplet spacing does not affect the peripheral crown height; when the droplet spacing decreases or the initial impact velocity increases, the height of the peripheral crown increases at the beginning, and then, because the crown splashed under Rayleigh-Plateau instability, this results in the reduction of the crown height. At the same time, it is found that when the initial impact velocity increases, the angle between the upstream peripheral jet and the dynamic film becomes larger. The more obvious the horizontal movement characteristics, the more restrained the crown height; the spread length increases with the increase of the dynamic film speed, droplet spacing and the initial impact velocity. When the liquid film is thicker, more fluid enters the crown, due to the crown being unstable, the surface tension is not enough to overcome the weight of the rim at the end of the crown, resulting in droplets falling off.  相似文献   

3.
A two-dimensional gas-phase model of ignition of a flammable liquid by a single particle heated to a high temperature with consideration given to heat conduction, evaporation, diffusion, and convection of fuel vapor in an oxidizer medium was developed. Numerical simulations made it possible to determine the dependences of the ignition delay time for the liquid on the size and initial temperature of the particle. The minimum size and initial temperature of the particle at which ignition still occurs were estimated.  相似文献   

4.
对液态金属自由表面膜流在强磁场下的磁流体力学效应进行了数值模拟研究,获得了液态金属自由表面的形状、截面流速分布及截面上的电动势分布,从而能对膜流的一些磁流体动力学行为作出解释。数值计算结果与理论分析和实验结果符合较好。由实验和数值模拟结果可以得出,液态金属膜流通过强磁场时,磁场会阻碍膜流的运动。  相似文献   

5.
A complex of interrelated processes of heat-mass transfer with phase transitions at the ignition of liquid condensed substance by a low-power laser beam is investigated. Mechanisms of the heat-mass transfer processes are analyzed. The scale of influence of the power and the lasing range radius of the laser beam on the ignition characteristics is found. Critical conditions that do not enable the ignition in a system of liquid condensed substance film-laser beam-gas-vapor mixture are determined.  相似文献   

6.
实现中心点火的基本条件是在内爆中心形成面密度0.3 g/cm2,温度10 keV的点火热斑。减速阶段流体不稳定性的增长,会破坏对称压缩,减小热斑体积,直接破坏点火热斑的形成,对点火构成威胁。在原有LARED-S程序的基础上,加入热核反应和α粒子加热过程程序模块,对直接驱动ICF球内爆过程进行数值模拟研究,1维模拟结果与NIF直接驱动点火靶的设计基本相符,显示α粒子加热对边缘点火起重要作用;2维模拟表明减速阶段流体不稳定性对点火有重要影响。  相似文献   

7.
The processes of heat and mass transfer with phase transitions and chemical reactions in the ignition of liquid fuel by a local source of heating, a hot metal particle, under conditions of fuel burnout are studied. The influence of liquid fuel burnout on the ignition characteristics is analyzed, and the results of investigation of the extent of influence of this factor for solid and liquid condensed materials under conditions of local heating are compared.  相似文献   

8.
直接驱动球内爆点火的数值模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
 实现中心点火的基本条件是在内爆中心形成面密度0.3 g/cm2,温度10 keV的点火热斑。减速阶段流体不稳定性的增长,会破坏对称压缩,减小热斑体积,直接破坏点火热斑的形成,对点火构成威胁。在原有LARED-S程序的基础上,加入热核反应和α粒子加热过程程序模块,对直接驱动ICF球内爆过程进行数值模拟研究,1维模拟结果与NIF直接驱动点火靶的设计基本相符,显示α粒子加热对边缘点火起重要作用;2维模拟表明减速阶段流体不稳定性对点火有重要影响。  相似文献   

9.
Interaction of a premixed flame with a liquid fuel film on a wall   总被引:1,自引:0,他引:1  
In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.  相似文献   

10.
We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling.  相似文献   

11.
激光等离子体相互作用的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 基于激光等离子体相互作用的复杂物理过程的数学模型,采用PIC方法分别研究了P极化和S极化非均匀短脉冲强激光入射均匀分布的稠密等离子体时引起的空泡、成丝等物理现象。模拟了激光脉冲在真空中的3维传播形貌。由3维密度分布图发现:激光产生的巨大的有质动力向两侧推动粒子,形成等离子体密度通道;当激光脉冲入射等离子体区域后,纵向加速的电子速度峰值出现在电流峰值处。  相似文献   

12.
A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C–H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm−1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.  相似文献   

13.
Ultrasonically induced flow is an important phenomenon observed in a sonochemical reactor. It controls the mass transport of sonochemical reaction and enhances the reaction performance. In the present paper, the liquid velocity distribution of ultrasonically induced flow in the sonochemical reactor with a transducer at frequency of 490 kHz has been numerically simulated. From the comparison of simulation results and experimental data, the ultrasonic absorption coefficient in the sonochemical reactor has been evaluated. To simulate the liquid velocity near the liquid surface above the transducer, which is the main sonochemical reaction area, it is necessary to include the acoustic fountain shape into the computational domain. The simulation results indicate that the liquid velocity increases with acoustic power. The variation of liquid height also influences the behavior of liquid velocity distribution and the mean velocity above the transducer centre becomes a maximum when the liquid height is 0.4 m. The liquid velocity decreases with increasing the transducer plate radius at the same ultrasonic power.  相似文献   

14.
The Mississippi State University Particle Sizing Instrument (MSU-PSI) is designed to perform real-time measurement of the particle-size distributions by means of non-intrusive methods. The instrument is based upon the principles of forward scatter of a laser beam by a single particle. Three beams are used to illuminate the particle. The green central beam is used to measure particles in the range of 2–15 μm in diameter. Two crossed blue beams are used to validate the trajectory of particles through the green beam. The size of a particle is determined by the amount of light that it scatters. This scattered light is captured and processed electronically and eventually is converted to a histogram, which, when interpreted, will be a representation of the particle-size distribution. In this paper, the model used to simulate the instrument numerically in the Ripple Validated Small Angle Near Forward Scattering (RVSANFS) mode is explained.  相似文献   

15.
A universal physical-mathematical model of a pulse-periodic laser based on metal-ion vapor is proposed. Based on it, numerical experiments were performed for a laser based on Eu II ions. The results of calculation are in satisfactory agreement with available experimental data.  相似文献   

16.
Heat transfer in a sessile liquid droplet was studied with numerical methods. A computer code was developed for solving the problem of convection in an axisymmetric hemispherical droplet and in a spherical layer as well. The problem of establishing an equilibrium state in a droplet was solved using several variables: temperature, stream function, and vorticity. Simulation was performed for droplets of water, ethyl alcohol, and model liquids. Variable parameters: intensity of heat transfer from droplet surface, Rayleigh and Marangoni dimensionless criteria, and the characteristic temperature difference. It was revealed that the curve of convective flow intensity versus heat transfer intensity at droplet surface has a maximum. A dual-vortex structure was obtained in a stationary hemispherical profile of liquid droplet for the case of close values for thermocapillary and thermogravitational forces. Either thermocapillary or thermogravitational vortex might be dominating phenomena in the flow structure.  相似文献   

17.
A complex of interrelated heat-mass transfer processes at gas-phase ignition of a typical liquid fuel by a hot metal particle immersed partially into a liquid is investigated numerically. The scale of influence of the radiation heat exchange at particle—liquid fuel and particle—gas—vapor mixture interfaces is found. Conditions under which the impact of this factor can be neglected are determined.  相似文献   

18.
Numerical simulation of the ignition of a composite propellant by a single “hot” particle of metal is carried out in the framework of the solid-phase model of ignition. The dependences of the ignition lag time for a metallized condensed matter on the initial temperature of a local energy source are determined. Close agreement of the obtained theoretical results with the known experimental data is found.  相似文献   

19.
The process of gas-phase ignition of a liquid fuel film with incandescent small metal particles in the form of a parallelepiped, disk, or hemisphere was numerically simulated. The magnitude of influence of the particle shape on the delay time of ignition of a liquid fuel was determined. The range of parameters of the particle at which the effect of its shape on the ignition delay time is unimportant was established.  相似文献   

20.
吸气式激光推进中激光能量沉积过程的数值模拟   总被引:1,自引:0,他引:1  
结合辐射输运方程,在流体力学方程组的能量方程中加入包括空气吸收的激光能量以及高温气体向周围辐射损失的能量源项,转化为辐射流体力学方程组,建立了用于模拟吸气式激光推进中能量沉积过程的物理力学模型和计算方法。该辐射流体力学计算程序可以很好地模拟激光能量沉积过程中空气对激光能量的吸收、等离子体对激光的屏蔽作用以及激光维持的爆轰波的传播规律,计算得到激光能量的沉积效率约为57%,激光维持的爆轰波的传播速度与同等条件下的理论和实验结果吻合得较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号