首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a cavitation model based on the Stokes equation and formulate adaptive finite element methods for its numerical solution. A posteriori error estimates and adaptive algorithms are derived, and numerical examples illustrating the theory are supplied, in particular with comparison to the simplified Reynolds model of lubrication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
为进一步探讨边界效应对加筋土地基的影响,基于室内方形基础下加筋土地基大模型试验,采用ABAQUS有限元软件建立加筋土地基数值模型,主要分析了模型宽度L和加载板宽度B对加筋土地基承载性能、地基内部土体应力应变及筋材变形的影响.结果表明:无筋地基与加筋土地基极限承载力均随L/B的减小而增大,当L/B>5时,可忽略边界效应对...  相似文献   

3.
A fully implicit finite difference scheme is used to evaluate one-dimensional infiltration. The method makes it possible to solve a general infiltration problem; nonhomogeneous soil profile and saturated-unsaturated seepage can be treated. To solve special problems of hydrology and soil physics, several types of boundary conditions are formulated and numerically expressed. The type of boundary conditions may vary in time depending on the values of the unknown function. High accuracy of solution is emphasized. Several applications of this method are presented.  相似文献   

4.
The Reynolds model is a reduced Stokes model, valid for narrow lubrication regions. In order to be able to handle locally non‐narrow regions such as pits or grooves, often displaying rapid geometrical variations, there is a need to be able to transit to the more accurate Stokes model. A fundamental problem is how to couple the two models in a numerical simulation, preferably allowing for different meshes in the different domains. In this paper, we present a weak coupling method for Reynolds and Stokes models for lubrication computations, including the possibility of cavitation in the different regions. The paper concludes with a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a three‐dimensional unstructured Cartesian grid model for simulating shallow water hydrodynamics in lakes, rivers, estuaries, and coastal waters. It is a flux‐based finite difference model that uses a cut‐cell approach to fit the bottom topography and shorelines and, at the same time, has the flexibility of discretizing complex geometries with Cartesian grids that can be arbitrarily downsized in the two horizontal directions simultaneously. Because of the use of Cartesian grids, the grid generation is very simple and does not suffer the grid generation headache often seen in many other unstructured models, as the unstructured Cartesian grid model does not have any requirements on the orthogonality of the grids. The newly developed unstructured Cartesian grid model was validated against analytical solutions for a three‐dimensional seiching case in a rectangular basin, before it was compared with another three‐dimensional model named LESS3D for circulations and salinity transport processes in an idealized embayment that is driven by tides and freshwater inflows. Model tests show that the numerical procedure used in the unstructured Cartesian grid model is robust. Similar to other unstructured models, a variable grid size has resulted in a smaller number of grids required for a reasonable model simulation, which in turn reduces the CPU time used in the model run. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The numerical solution of a singularly perturbed problem for the semilinear parabolicdifferential equation with parabolic boundary layers is discussed.A nonlinear two-leveldifference scheme is constructed on the special non-uniform grids.The uniform convergenceof this scheme is proved and some numerical examples are given.  相似文献   

8.
A wisely chosen geometry of micro textures with the favorable relative motion of lubricated surfaces in contacts can enhance tribological characteristics. In this paper, a computational investigation related to the combined influence of bearing surface texturing and journal misalignment on the performances of hydrodynamic journal bearings is reported. To this end, a numerical analysis is performed to test three texture shapes: square “SQ”, cylindrical “CY”, and triangular “TR”, and shaft misalignment variation in angle and degree. The Reynolds equation of a thin viscous film is solved using a finite differences scheme and a mass conservation algorithm (JFO boundary conditions), taking into account the presence of textures on both full film and cavitation regions. Preliminary results are compared with benchmark data and are consistent with a positive enhancement in misaligned bearing performances (load carrying capacity and friction). The results suggest that the micro-step bearing mechanism is a key parameter, where the micro-pressure recovery action present in dimples located at the second angular part of the bearing (from 180° to 360°) can compensate for the loss on performances caused by shaft misalignment, while the micro-pressure drop effect at the full film region causes poor performances. Considering the right arrangement of textures on the contact surface, their contours geometries can have a significant impact on the performance of misaligned journal bearings, particularly at high eccentricity ratios, high misalignment degrees and when the misalignment angle α approaches to 0° or 180°.  相似文献   

9.
The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes, estuaries, and oceans. While this assumption is valid in many cases and has been successfully used in numerous studies, there are many cases where this assumption is questionable. This paper presents a three‐dimensional, hydrodynamic model for free‐surface flows without using the hydrostatic pressure assumption. The model includes two predictor–corrector steps. In the first predictor–corrector step, the model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure field at the new time step. Based on the estimated pressure field, an intermediate velocity field is calculated, which is then corrected by adding the non‐hydrostatic component of the pressure to the estimated pressure field. A Poisson equation for non‐hydrostatic pressure is solved before the second intermediate velocity field is calculated. The final velocity field is found after the free surface at the new time step is computed by solving a free‐surface correction equation. The numerical method was validated with several analytical solutions and laboratory experiments. Model results agree reasonably well with analytical solutions and laboratory results. Model simulations suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three‐dimensional, free‐surface flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the fundamental theories of the solid deformation and methane flowing, a mathematical model for solid-gas coupled problem on methane flowing is developed. The smoothness and existence of the solution of this model are proved, and the numerical method for solving the present problem is presented.This project was supported by the Shanxi Province Natural Science Foundation.  相似文献   

11.
A number of contributions have been made during the last decades to model pure-diffusive transport problems by using the so-called hyperbolic diffusion equations. These equations are used for both mass and heat transport. The hyperbolic diffusion equations are obtained by substituting the classic constitutive equation (Fick’s and Fourier’s law, respectively), by a more general differential equation, due to Cattaneo (C R Acad Sci Ser I Math 247:431–433, 1958). In some applications the use of a parabolic model for diffusive processes is assumed to be accurate enough in spite of predicting an infinite speed of propagation (Cattaneo, C R Acad Sci Ser I Math 247:431–433, 1958). However, the use of a wave-like equation that predicts a finite velocity of propagation is necessary in many other calculations. The studies of heat or mass transport with finite velocity of propagation have been traditionally limited to pure-diffusive situations. However, the authors have recently proposed a generalization of Cattaneo’s law that can also be used in convective-diffusive problems (Gómez, Technical Report (in Spanish), University of A Coruña, 2003; Gómez et al., in An alternative formulation for the advective-diffusive transport problem. 7th Congress on computational methods in engineering. Lisbon, Portugal, 2004a; Gómez et al., in On the intrinsic instability of the advection–diffusion equation. Proc. of the 4th European congress on computational methods in applied sciences and engineering (CDROM). Jyväskylä, Finland, 2004b) (see also Christov and Jordan, Phys Rev Lett 94:4301–4304, 2005). This constitutive equation has been applied to engineering problems in the context of mass transport within an incompressible fluid (Gómez et al., Comput Methods Appl Mech Eng, doi: 10.1016/j.cma.2006.09.016, 2006). In this paper we extend the model to compressible flow problems. A discontinuous Galerkin method is also proposed to numerically solve the equations. Finally, we present some examples to test out the performance of the numerical and the mathematical model.  相似文献   

12.
The Bradshaw-Ferriss-Atwell model for 2D constant property turbulent boundary layers is shown to be ill-posed with respect to numerical solution. It is shown that a simple modification to the model equations results in a well-posed system which is hyperbolic in nature. For this modified system a numerical algorithm is constructed by discretizing in space using the Petrov-Galerkin technique (of which the standard Galerkin method is a special case) and stepping in the timelike direction with the trapezoidal (Crank-Nicolson) rule. The algorithm is applied to a selection of test problems. It is found that the solutions produced by the standard Galerkin method exhibit oscillations. It is further shown that these oscillations may be eliminated by employing the Petrov-Galerkin method with the free parameters set to simple functions of the eigenvalues of the modified system.  相似文献   

13.
Single nucleotide polymorphisms (SNPs) are single base pair variations within the genome that are important indicators of genetic predisposition towards specific diseases. This study explores the feasibility of SNP detection using a thermoelectric sequencing method that measures the heat released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a DNA strand. We propose a three-dimensional mathematical model that governs the DNA sequencing device with a reaction zone that contains DNA template/primer complex immobilized to the surface of the lower channel wall. The model is then solved numerically. Concentrations of reactants and the temperature distribution are obtained. Results indicate that when the nucleoside is complementary to the next base in the DNA template, polymerization occurs lengthening the complementary polymer and releasing thermal energy with a measurable temperature change, implying that the thermoelectric conceptual device for sequencing DNA may be feasible for identifying specific genes in individuals.  相似文献   

14.
A mathematical programming algorithm for limit analysis   总被引:1,自引:0,他引:1  
This paper deals with the limit analyses of perfect rigid-plastic continua. Based on the kinematic theorem of the limit analysis theory, a mathematical programming finite element formula for determining the upper bound load multiplier has been established, and an iteration algorithm proposed accordingly. In this algorithm the plastic and rigid zones are distinguished for every iteration step, and the goal function is modified gradually. The difficulties caused by the nonsmoothness of the goal function are overcome. Some examples solved by this algorithm are presented. The project supported by National Natural Science Foundation of China.  相似文献   

15.
Two kinds of variational principles for numerical simulation of heat transfer and contact analysis are respectively presented. A finite element model for numerical simulation of the thermal contact problems is developed with a pressure dependent heat transfer constitutive model across the contact surface. The numerical algorithm for the finite element analysis of the thermomechanical contact problems is thus developed. Numerical examples are computed and the results demonstrate the validity of the model and algorithm developed. The project supported by the National Key Basic Research Special Foundation (G1999032805), the National Natural Science Foundation of China (50178016, 10225212) and the Foundation for University Key Teacher by the Ministry of Education of China  相似文献   

16.
A non-horizontal multi-layer element model is developed for the simulation for the flow in natural rivers. Either Cartesian coordinates or sigma coordinates will experience difficulties in dealing with the water surface and irregular bed topography of natural rivers. To create the surface-fitting and non-deformed cells, the newly developed model divides the water column into several layers with non-horizontal interfaces which are nearly parallel to the water surface. The irregular bed topography is also represented by the layered integration between non-horizontal interfaces. Two case studies for the flow in a straight channel and the flow in an S-shaped meander channel are conducted with good agreement between the numerical predictions and the analytical or experimental results. The model is further applied for the investigation of the flow in a 12-km-long and 3.46-m-drop reach of the Yangtze River with the water surface evaluation and the stream-wise velocity satisfactory accordance with the observed data.  相似文献   

17.
A new nonlinear force model based on experimental data is proposed to replace the classical Hertzian contact model to solve the fractional index nonlinearity in a ball bearing system. Firstly, the radial force and the radial deformation are measured by statics experiments, and the data are fitted respectively by using the Hertzian contact model and the cubic polynomial model. Then, the two models are compared with the approximation formula appearing in Aeroengine Design Manual. In consequence, the two models are equivalent in an allowable deformation range. After that, the relationship of contact force and contact deformation for single rolling element between the races is calculated based on statics equilibrium to obtain the two kinds of nonlinear dynamic models in a rigid-rotor ball bearing system. Finally, the displacement response and frequency spectrum for the two system models are compared quantitatively at different rotational speeds, and then the structures of frequency-amplitude curves over a wide speed range are compared qualitatively under different levels of radial clearance, amplitude of excitation, and mass of supporting rotor. The results demonstrate that the cubic polynomial model can take place of the Hertzian contact model in a range of deformation.  相似文献   

18.
ntroductionLetΩ R2 beaboundeddomain .Weconsiderthefollowingnon_stationarynaturalconvectionproblem :Problem (Ⅰ ) Findu =(u1,u2 ) ,p ,andTsuchthat,foranyt1>0 ,ut- μΔu +(u· )u + p=λjT   ((x ,y ,t) ∈Ω× (0 ,t1) ) ,divu =0          ((x ,y,t) ∈Ω× (0 ,t1) ) ,Tt-ΔT +λu· T =0   ((x,y,t) ∈Ω× (0 ,t1) ) ,u =0 ,T =0       ((x,y,t)∈ Ω× (0 ,t1) ) ,u(x ,y ,0 ) =0 , T(x,y,0 ) =f(x,y)   ((x,y) ∈Ω) ,whereuisthefluidvelocityvectorfield ,pthepressurefield ,Tthet…  相似文献   

19.
The present paper addresses the optimization of finite‐difference schemes when these are to be used for numerically approximating spatial derivatives in aeroacoustics evolution problems. With that view in mind, finite‐difference operators are firstly detailed from a theoretical point of view. Secondly, time, the way such operators can be optimized in a spectral‐like sense is recalled, before the main limitations of such an optimization are highlighted. This leads us to propose an alternative optimization approach of innovative character. Such a novel optimization technique consists of enhancing the scheme's formal accuracy through a minimization of its leading‐order truncation error. This so‐called intrinsic optimization procedure is first detailed, before it is thoroughly analyzed, from both a theoretical and a practical point of view. The second part of the paper focuses on two particular intrinsically optimized schemes, which are carefully assessed via a direct comparison against their standard and/or spectral‐like optimized counterparts, such a comparative exercise being conducted utilizing several academic test cases of increasing complexity. There, it is shown how intrinsically optimized schemes indeed constitute an advantageous alternative to either the standard or the spectral‐like optimized ones, being allotted with both (i) the better scalability of the former scheme with respect to grid convergence effects when the grid density increases and (ii) the higher accuracy of the latter scheme when the discretization level becomes marginal. Thanks to that, such intrinsically optimized schemes offer very good trade‐offs in terms of (i) accuracy; (ii) robustness; and (iii) numerical efficiency (CPU cost). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we consider a singularly perturbed problem without turning points. On a special diseretization mesh, a coupling difference scheme, resulting from central difference scheme and Abrahamsson-Keller-Kreiss box scheme, is proposed and the second order convergence, uniform in the small parameter, is proved. Finally, numerical resulls are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号