首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical integrations of a hypothetical radical chain reaction model have been performed for the pyrolysis of CH2ClCH3 which is known to be molecular. Analyses of the modelling results have led to a better understanding of the participation (or nonparticipation) of “dead” radicals in the self-inhibition of the radical chain reaction. Attention is focused on the fact that apparently slow elementary reactions still may have to be taken into account in a pyrolysis mechanism when they produce “dead” radicals which can accumulate. © John Wiley & Sons, Inc.  相似文献   

2.
The reaction of alkyn‐1‐yl(chloro)(methyl)vinyl‐ and alkyn‐1‐yl(chloro)(phenyl)‐vinylsilane with 9‐borabicyclo[3.3.1]nonane (9‐BBN) afforded selectively 1‐silacyclopent‐2‐ene derivatives containing a Si? Cl function, as a result of consecutive 1,2‐hydroboration and 1,1‐organoboration. Protodeborylation with acetic acid left the Si? Cl functions in various 1‐silacyclopent‐2‐enes untouched, whereas acetic acid in the presence of dipropylamine led to conversion of the Si? Cl into the Si? OAc function. New starting materials and all products were characterized in solution by multinuclear NMR spectroscopy (1H, 11B, 13C and 29Si NMR), and the molecular structures of two 1‐silacyclopent‐2‐ene derivatives were determined by X‐ray analysis. The gas phase geometries of 1‐silacyclopent‐2‐enes were optimized by DFT calculations [B3LYP/6‐311 + G(d,p) level of theory], found to be in reasonable agreement with the results of the crystal structure determination, and NMR parameters were calculated at the same level of theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The kinetics and mechanisms of the dehydrochlorination of 2‐chloro‐1‐ phenylethane, 3‐chloro‐1‐phenylpropane, 4‐chloro‐1‐phenylbutane, 5‐chloro‐1‐phenylpentane, and their corresponding chloroalkanes were examined by means of electronic structure calculation using density functional theory methods B3LYP/6–31G(d,p), B3LYP/6–31++G(d,p), MPW1PW91/6–31G(d,p), MPW1PW91/6–31++G(d,p), PBEPBE/6–31G(d,p), and PBEPBE/6–31++G(d,p). The potential energy surface was investigated for the minimum energy path. Calculated enthalpies and energies of activation are in good agreement with experimental values using the MPW1PW91 and B3LYP methods. The transition state of these reactions is a four‐centered cyclic structure. The reported experimental results proposing neighboring group participation by the phenyl group was not supported by theoretical calculations. The rate‐determining process in these reactions is the breaking of Cl? C bond. The reactions are described as concerted moderately polar and nonsynchronous. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 292–302, 2011  相似文献   

4.
The hydrogen abstraction reactions of 1,1‐ and 1,2‐difluoroethane with the OH radical have been investigated by the ab initio molecular orbital theory. The geometries of the reactants, products, and transition states have been optimized at the (U)MP2=full level of theory in conjunction with 6‐311G(d,p) basis functions. Single‐point (U)MP2=full with larger basis set, such as 6‐311G(3d,2p), and QCISD(T)=full/6‐311G(d,p) calculations have also been carried out to observe the effects of basis sets utilized and higher order electron correlation. Three and four reaction channels have been identified for 1,1‐ and 1,2‐difluoroethane, respectively. In the case of 1,1‐difluoroethane, hydrogen abstraction from the α‐carbon has been found to be easier than that from the β‐carbon. The barriers of the four reaction channels for 1,2‐difluoroethane are close to each other. Weak hydrogen bonding interactions have been observed between hydroxyl hydrogen and a fluorine atom in the transition states. Rate constants for the reactions of 1,1‐ and 1,2‐difluoroethane with the OH radical have been calculated using the standard transition state theory and found to be in good agreement with the experimental results. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1305–1318, 2000  相似文献   

5.
2‐Chloro‐4‐nitro­benzoic acid and 2‐chloro‐5‐nitro­benzoic acid form O—H?N hydrogen bonds with pyrazine to afford 2:1 complexes of 2C7H4ClNO4·C4H4N2, (I) and (II), respectively, that are located on inversion centers. The 2C7H4ClNO4·­C4H4N2 units in both complexes are connected by weak C—H?O hydrogen bonds; the units build a three‐dimensional hydrogen‐bond network in (I) and a ribbon structure in (II).  相似文献   

6.
7.
The structures of four isomeric compounds, all C7H4ClNO4·C9H7N, of quinoline with chloro‐ and nitro‐substituted benzoic acid, namely, 2‐chloro‐5‐nitrobenzoic acid–quinoline (1/1), (I), 3‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (II), 4‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (III), and 5‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (IV), have been determined at 185 K. In each compound, a short hydrogen bond is observed between the pyridine N atom and a carboxyl O atom. The N...O distances are 2.6476 (13), 2.5610 (13), 2.5569 (12) and 2.5429 (12) Å for (I), (II), (III) and (IV), respectively. Although in (I) the H atom in the hydrogen bond is located at the O site, in (II), (III) and (IV) the H atom is disordered in the hydrogen bond over two positions with (N site):(O site) occupancies of 0.39 (3):0.61 (3), 0.47 (3):0.53 (3) and 0.65 (3):0.35 (3), respectively.  相似文献   

8.
A novel series of 6‐chloro‐1,4,2‐benzodithiazine 1,1‐dioxide derivatives 2‐19 with alkyl, aryl or het‐eroaryl substituents at position 3 have been synthesized by the reaction of 4‐chloro‐2‐mercaptobenzenesul‐fonamides with aldehydes, aldehyde acetals or acid anhydrides. 6‐Chloro‐3‐(2‐hydroxyphenyl)‐7‐methyl‐2,3‐dihydro‐l,4,2‐benzodithiazine 1,1‐dioxide (7) exhibited remarkable activity on the leukemia CCRF‐CEM cell line (GI50<10 nM) and moderate activity against the other 49 human tumor cell lines derived from nine different cancer type.  相似文献   

9.
On crystallization from CHCl3, CCl4, CH2ClCH2Cl and CHCl2CHCl2, 6‐chloro‐5‐hydroxy‐2‐pyridone, C5H4ClNO2, (I), undergoes a tautomeric rearrangement to 6‐chloro‐2,5‐dihydroxypyridine, (II). The resulting crystals, viz. 6‐chloro‐2,5‐dihydroxypyridine chloroform 0.125‐solvate, C5H4ClNO2·0.125CHCl3, (IIa), 6‐chloro‐2,5‐dihydroxypyridine carbon tetrachloride 0.125‐solvate, C5H4ClNO2.·0.125CCl4, (IIb), 6‐chloro‐2,5‐dihydroxypyridine 1,2‐dichloroethane solvate, C5H4ClNO2·C2H4Cl2, (IIc), and 6‐chloro‐2,5‐dihydroxypyridine 1,1,2,2‐tetrachloroethane solvate, C5H4ClNO2·C2H2Cl4, (IId), have I41/a symmetry, and incorporate extensively disordered solvent in channels that run the length of the c axis. Upon gentle heating to 378 K in vacuo, these crystals sublime to form solvent‐free crystals with P21/n symmetry that are exclusively the pyridone tautomer, (I). In these sublimed pyridone crystals, inversion‐related molecules form R22(8) dimers via pairs of N—H...O hydrogen bonds. The dimers are linked by O—H...O hydrogen bonds into R46(28) motifs, which join to form pleated sheets that stack along the a axis. In the channel‐containing pyridine solvate crystals, viz. (IIa)–(IId), two independent host molecules form an R22(8) dimer via a pair of O—H...N hydrogen bonds. One molecule is further linked by O—H...O hydrogen bonds to two 41 screw‐related equivalents to form a helical motif parallel to the c axis. The other independent molecule is O—H...O hydrogen bonded to two related equivalents to form tetrameric R44(28) rings. The dimers are π–π stacked with inversion‐related dimers, which in turn stack the R44(28) rings along c to form continuous solvent‐accessible channels. CHCl3, CCl4, CH2ClCH2Cl and CHCl2CHCl2 solvent molecules are able to occupy these channels but are disordered by virtue of the site symmetry within the channels.  相似文献   

10.
The structures of three isomeric compounds, C7H4ClNO4·C8H6N2, of phthalazine with chloro‐ and nitro‐substituted benzoic acid, namely, 3‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (I), 4‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (II), and 4‐chloro‐3‐nitrobenzoic acid–phthalazine (1/1), (III), have been determined at 190 K. In the asymmetric unit of each compound, there are two crystallographically independent chloronitrobenzoic acid–phthalazine units, in each of which the two components are held together by a short hydrogen bond between an N atom of the base and a carboxyl O atom. In one hydrogen‐bonded unit of (I) and in two units of (II), a weak C—H...O interaction is also observed between the two components. The N...O distances are 2.5715 (15) and 2.5397 (17) Å for (I), 2.5655 (13) and 2.6081 (13) Å for (II), and 2.613 (2) and 2.589 (2) Å for (III). In both hydrogen‐bonded units of (I) and (II), the H atoms are each disordered over two positions with (N site):(O site) occupancies of 0.35 (3):0.65 (3) and 0.31 (3):0.69 (3) for (I), and 0.32 (3):0.68 (3) and 0.30 (3):0.70 (3) for (II). The H atoms in the hydrogen‐bonded units of (III) are located at the O‐atom sites.  相似文献   

11.
The four oligosulfanes, bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­disulfane, C16H24Cl2O2S2, (III), 1,3‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­trisulfane, C16H24Cl2O2S3, (V), 1,4‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­tetrasulfane, C16H24Cl2O2S4, (VII), and 1,6‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­hexasul­fane, C16H24Cl2O2S6, (VIII), all have similar geometric parameters, with the C—C bond lengths involving the chloro‐substituted cyclo­butanyl C atom being elongated to about 1.59 Å. There are two mol­ecules in the asymmetric units of the tri‐ and tetrasulfanes, and the mol­ecules in the latter compound have local C2 symmetry. The mol­ecule of the hexasulfane has crystallographic C2 symmetry. Most of the cyclo­butanyl rings are not perfectly planar and have slight but varying degrees of distortion towards a flattened tetrahedron. The polysulfane chain in each structure has a helical conformation, with each additional S atom in the chain adding approximately one quarter of a turn to the helix.  相似文献   

12.
Comparison of molecular orbital calculations of 1‐butadienyllithiums and representative 1‐chloro‐1‐lithio‐2‐phenylalkenes, carried out by using MNDO and AM1, reveals that the major stabilizing interaction with lithium in these systems is predicted to be agostic bonding between lithium and hydrogen. MNDO and AM1 calculations for 1‐chloro‐1‐lithio‐2‐phenylethenes give evidence for agostic bonding between lithium and the ortho H, such as compressed pertinent bond angles and increased pertinent bond lengths. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:263–269, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10027  相似文献   

13.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

14.
Two series of a total of ten cocrystals involving 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton‐accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C 73 , 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐bromothiophene‐2‐carboxylic acid (1/1), 1 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐chlorothiophene‐2‐carboxylic acid (1/1), 2 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2,4‐dichlorobenzoic acid (1/1), 3 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐aminobenzoic acid (1/1), 4 , the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H…N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion‐related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H…O and O—H…N hydrogen bonds to form a large cage‐like tetrameric unit with an R42(20) graph‐set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H…N hydrogen bonds, generating R22(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐methylthiophene‐2‐carboxylic acid (1/1), 5 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–benzoic acid (1/1), 6 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐methylbenzoic acid (1/1), 7 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐methylbenzoic acid (1/1), 8 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐methylbenzoic acid (1/1), 9 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐aminobenzoic acid (1/1), 10 , the carboxyl group interacts with position N3 and the adjacent 4‐amino group of the corresponding pyrimidine ring via O—H…N and N—H…O hydrogen bonds to generate the robust R22(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H…N hydrogen‐bond interactions in a linear fashion to form a chain‐like arrangement. In cocrystal 1 , a Br…Br halogen bond is present, in cocrystals 2 and 3 , Cl…Cl halogen bonds are present, and in cocrystals 5 , 6 and 7 , Cl…O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed.  相似文献   

15.
The crystal structures of the title compounds (both C7H7ClO) are characterized by two independent mol­ecules in each of the asymmetric units and feature O—H...O, C—H...π and π–π interactions. In addition, intermolecular C—H...Cl and intramolecular O—H...Cl interactions are present in 2‐chloro‐5‐methyl­phenol. For each crystal, the non‐covalent interactions emphasize the different spatial environments for the two independent mol­ecules.  相似文献   

16.
The thermal dehydrochlorination CCl2FCH3 → CClFCH2 + HCl has been studied in a static system between 610 and 700 K at pressures ranging from 14 to 120 torr. The experiments were performed in the absence and presence of an added inhibitor (0.5 to 7 torr of C3H6) or catalyst (2 to 8 torr of CCl4). The evolution of the reaction was followed by measuring the pressure rise in the quartz reaction vessel and analyzing the products by gas chromatography. All the experimental results can be explained quantitatively in terms of a reaction model both radical and molecular. The molecular dehydrochlorination has an activation energy of 57.05 kcal/mol and a preexponential factor of 1014.02 s−1. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 191–197, 2001  相似文献   

17.
A series of α‐diimine nickel(II) complexes containing chloro‐substituted ligands, [(Ar)N?C(C10H6)C?N(Ar)]NiBr2 ( 4a , Ar = 2,3‐C6H3Cl2; 4b , Ar = 2,4‐C6H3Cl2; 4c , Ar = 2,5‐C6H3Cl2; 4d , Ar = 2,6‐C6H3Cl2; 4e , Ar = 2,4,6‐C6H2Cl3) and [(Ar)N?C(C10H6)C?N(Ar)]2NiBr2 ( 5a , Ar = 2,3‐C6H3Cl2; 5b , Ar = 2,4‐C6H3Cl2; 5c , Ar = 2,5‐C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl‐substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear α‐olefins to high‐molecular weight polyethylenes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1964–1974, 2006  相似文献   

18.
19.
Synthesis of 7‐chloro‐9‐trifluoromethyl‐/7‐fluorophenothiazines is reported by Smiles rearrangement of 5‐chloro‐3‐trifluoromethyl‐/5‐fluoro‐2‐formamido‐2′‐nitrodiphenyl sulfides. The later were obtained by the formylation of 2‐amino‐5‐chloro‐7‐trifluoromethyl‐/5‐fluoro‐2′‐nitrodiphenyl sulfides, which were prepared by the condensation of 2‐amino‐5‐fluoro‐/5‐chloro‐3‐trifluoromethyl benzenethiols with o‐halonitrobenzenes. 1‐Nitrophenothiazines have also been synthesized by the condensation of 2‐aminobenzenethiols with o‐halonitrobenzenes, involving Smiles rearrangement in situ. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:81–86, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20235  相似文献   

20.
The structure of the title compound, C12H13ClN4, (I), comprises a racemic mixture of chiral mol­ecules associated by N—H?N hydrogen‐bonding interactions. The dihedral angle between the two rings is 77.90 (6)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号