首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper, we present a new method for simulating the motion of a disperse particle phase in a carrier gas through porous media. We assume a sufficiently dilute particle‐laden flow and compute, independently of the disperse phase, the steady laminar fluid velocity using the immersed boundary method. Given the velocity of the carrier gas, the equations of motion for the particles experiencing the Stokes drag force are solved to determine their trajectories. The ‘no‐slip consistent’ particle tracking algorithm avoids possible numerical filtration of very small particles due to the nonzero velocity field at the solid–fluid interface introduced by the immersed boundary method. This physically consistent tracking allows a reliable estimation of the filtration efficiency of porous filters due to inertial impaction. We illustrate and test our new approach for model porous media consisting of a structured array of aligned rectangular fibers, arranged in line and staggered. In the staggered geometry, the effect of the residual velocity at the solid–fluid interface is significant for particles with low inertia. Without adopting the developed no‐slip consistent numerical method, an artificial numerical filtration is observed, which becomes dominant for small enough particles. For both the in line and the staggered geometries, the filtration rate depends quite strongly and non monotonically on the particle inertia. This is expressed most clearly in the staggered arrangement in which a very strong increase in the filtration efficiency is observed at a well‐defined critical droplet size, corresponding to a qualitative change in the dominant particle paths in the porous medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
An Eulerian turbulent two phase flow model using kinetic theory of granular flows for the particle phase was developed in order to study evolving upward turbulent gas particle flows in a pipe. The model takes the feedback of the particles into account and its results agree well with experiments. Simulations show that the pipe length required for particle laden turbulent flow to become fully developed is up to five times longer than an unladen flow. To increase the understanding of the dependence of the development length on particle diameter a simple model for the expected development length was derived. It shows that the development length becomes shorter for increasing particle diameters, which agrees with simulations up to a particle diameter of 100 ??m. Thereafter the development length becomes longer again for increasing particle diameters because larger particles need a longer time to adjust to the velocity of the carrier phase.  相似文献   

4.
应用一种合理考虑湍流一旋流相互作用及湍流脉动各向异性的新的代数ReynoldS应力模型,对环形通道内的湍流旋流流动进行了数值模拟.研究了旋流数、进口轴向速度和内外半径比等参数对环形通道内湍流旋流流动的影响,以及由此产生的流场变化对强化环形通道内传热的作用.  相似文献   

5.
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas–solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal kθ–τθ equations, in addition to the hydrodynamic k–τ transport, and accounts for the particle–particle and particle–wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.  相似文献   

6.
An experimental investigation of a high Reynolds number flow (Re = 320 000) of a dilute liquid-solid mixture (<1% by volume) was conducted. The turbulent motion of both the liquid phase (water) and particles (0.5, 1, and 2 mm glass beads) was evaluated in an upward pipe flow using a particle image/tracking velocimetry (PIV/PTV) technique. Results show that the Eulerian mean axial velocity of the glass beads is lower than that of the liquid phase in the central region but higher in the near-wall region. Moreover, the presence of the coarse particles has a negligible effect on the turbulence intensity of the liquid phase. Particles show higher streamwise and radial fluctuations than the liquid-phase at the tested conditions. The profiles of particle concentration across the pipe radius show almost constant concentration in the core of the pipe with a decrease towards the near wall region for 0.5 and 1 mm particles. For the 2 mm particles, a nearly linear concentration gradient from centre to the pipe wall is observed. The results presented here provide new information concerning the effect of a dispersed particulate phase on the turbulence modulation of the liquid carrier phase, especially at high Reynolds numbers. The present study also demonstrates how correlations developed to determine if particles cause turbulence attenuation/augmentation are not applicable for solid-liquid flows at high Reynolds numbers. Finally, the importance of particle-fluid slip velocity on fluid phase turbulence modulation is illustrated.  相似文献   

7.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, the advection upwinding splitting method (AUSM) is modified for the resolution of two‐phase mixtures with interfaces. The compressible two‐fluid model proposed by Saurel and Abgrall is chosen as the model equations. Dense and dilute phases are described in terms of the volume fraction and equations of state to represent multi‐phase mixtures. Test cases involving an air–water shock tube, water faucet, and dilute particulate turbulent flows through a 90° bend are used to verify the current work. It is shown that the AUSM based on flux differences (AUSMD) contains the mechanism to correctly capture the contact discontinuity and interfaces between phases. In addition, a successful application to dilute particulate turbulence flows by the AUSMD is demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, the effects of flow turbulence intensity, temperature, particle sizes and impinging velocity on erosion by particle impact are demonstrated numerically. Underlying turbulent flow on an Eulerian frame is described by the compressible Reynolds averaged Navier–Stokes equations with a RNG k–ε turbulence model. The particle trajectories and particle–wall interactions are evaluated by a Eulerian–Lagrangian approach in a two‐way coupling system. An erosion model considering material weight removal from surfaces is used to predict erosive wear. Computational validation against measured data is demonstrated satisfactorily. The analysis of erosion shows that the prevention of erosion is enhanced by increasing the effects of flow temperature and turbulence intensity and reducing particle inertial momentum. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The direct numerical simulation (DNS) of the Taylor–Couette flow in the fully turbulent regime is described. The numerical method extends the work by Quadrio and Luchini [M. Quadrio, P. Luchini, Eur. J. Mech. B/Fluids 21 (2002) 413–427], and is based on a parallel computer code which uses mixed spatial discretization (spectral schemes in the homogeneous directions, and fourth-order, compact explicit finite-difference schemes in the radial direction). A DNS is carried out to simulate for the first time the turbulent Taylor–Couette flow in the turbulent regime. Statistical quantities are computed to complement the existing experimental information, with a view to compare it to planar, pressure-driven turbulent flow at the same value of the Reynolds number. The main source for differences in flow statistics between plane and curved-wall flows is attributed to the presence of large-scale rotating structures generated by curvature effects.  相似文献   

12.
With a concise review on some basic and novel algorithms and methods for the techniques of particle-imaging velocimetry (PIV), the paper reports an application of the PIV techniques to the investigation of particle motion in a gas–solid two-phase spiral flow in a horizontal tube. Axial velocities of the transported particles are obtained. Some important features of particle motion governing high transportation efficiency of the spiral flow are revealed by investigating probability density distribution of particle locations in a pipe cross-section.  相似文献   

13.
A technique is presented for the simultaneous measurement of the local number and velocity probability densities of a dilute two-phase suspension which has a distribution of particle sizes and a predominate direction of flow orientation such as in the cases of pipe and boundary-layer flows. It is shown that by a suitable scheme of discrimination on the amplitude as well as the residence time and frequency of the individual Laser-Doppler bursts, one can obtain the statistics on the size number density distribution and, for each size range, velocity distribution of the particulate phase together with the velocity probability distribution of the fluid phase.Results have been obtained for experiments conducted on a laminar uniform flow and a turbulent shear flow of a dilute glass particle-water suspension having a particle size distribution. Calibration needed for the scheme was accomplished by analyzing particle size and number density distribution data obtained from a Coulter particle sizing counter on a sample taken with an isokinetic probe.  相似文献   

14.
A two‐dimensional lattice model has been developed to describe the influence of vegetation on the turbulent flow structure in an open channel. The model includes the influence of vegetation density on the frictional effect of the channel bed and walls. For the walls, a semi‐slip boundary condition has been considered as an alternative to overcome the no‐slip boundary condition limitations in turbulent flows. The drag stress exerted by the flow on the vegetation as well as the gravity effect has also been taken into account. The proposed lattice model has been used to simulate the experimental results reported from the study of the influence of alternate vegetated zones on the open‐channel flow. The results show that the lattice model approach is a valid tool for describing these kinds of flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The ground vehicle mine blast mitigation problem represents a research topic that has recently been generating a very high level of interest and activity. Many aspects of the physics of the problem have been extensively researched. One area that has been neglected, however, is that aspect of the blast threat that relates to the rheology and flow, subsequent to ignition of the explosive, of the relatively energetic mixture of air and soil, sometimes referred to as ejecta. Methods developed for the study of fluidized beds that are used in, e.g. the chemical and power generation process industries, were adapted in order to more clearly define the rheology of air–glass bead mixtures and also of air–soil mixtures that comprise the ejecta. Continuity and momentum balance equations developed for fluidized beds were adapted, using physical properties of glass beads and soils, into a form relates to the properties of mine blast ejecta. These equations were then discretized and solved, for a relatively simple geometry, in order to validate the model and gain a general sense of the flow behavior of particle–air blends. Parametric studies were performed to estimate the variation of the rheology of the air–particle mixtures as a function of the particle diameter and the sphericity of the particles. Finally, the flow properties of a couple of real soils were investigated via application of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A dilute, particle-laden flow in a square duct with a 90° bend is modelled using a RANS approach, coupled to a second-moment turbulence closure, together with a Lagrangian particle tracking technique, with particle dispersion modelled using a stochastic approach that ensures turbulence anisotropy. Detailed predictions of mean and fluctuating fluid and particle velocities are validated through comparisons of predictions with experimental measurements made for gas–solid flows in a vertical-to-horizontal flow configuration. Reasonable agreement between predicted first and second moments and data is found for both phases, with the consistent application of anisotropic and three-dimensional modelling approaches resulting in predictions that compare favourably with those of other authors, and which provide fluctuating particle velocities in acceptable agreement with data.  相似文献   

19.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


20.
A Lagrangian–Eulerian model for the dispersion of solid particles in a two‐dimensional, incompressible, turbulent flow is reported and validated. Prediction of the continuous phase is done by solving an Eulerian model using a control‐volume finite element method (CVFEM). A Lagrangian model is also applied, using a Runge–Kutta method to obtain the particle trajectories. The effect of fluid turbulence upon particle dispersion is taken into consideration through a simple stochastic approach. Validation tests are performed by comparing predictions for both phases in a particle‐laden, plane mixing layer airflow with corresponding measurements formerly reported by other authors. Even though some limitations are detected in the calculation of particle dispersion, on the whole the validation results are rather successful. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号