首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
CCSD(T)/CBS and DFT methods are employed to study the stacking interactions of acetylacetonate‐type (acac‐type) chelates of nickel, palladium, and platinum with benzene. The strongest chelate–aryl stacking interactions are formed by nickel and palladium chelate, with interaction energies of −5.75 kcal mol−1 and −5.73 kcal mol−1, while the interaction of platinum chelate is weaker, with interaction energy of −5.36 kcal mol−1. These interaction energies are significantly stronger than stacking of two benzenes, −2.73 kcal mol−1. The strongest nickel and palladium chelate–aryl interactions are with benzene center above the metal area, while the strongest platinum chelate–aryl interaction is with the benzene center above the C2 atom of the acac‐type chelate ring. These preferences arise from very different electrostatic potentials above the metal ions, ranging from very positive above nickel to slightly negative above platinum. While the differences in electrostatic potentials above metal atoms cause different geometries with the most stable interaction among the three metals, the dispersion (correlation energy) component is the largest contribution to the total interaction energy for all three metals.  相似文献   

2.
Unimolecular reactions of mutual isomerization of cyclopentyl and 1-penten-5-yl radicals have been investigated by chemical activation. The radicals were generated by adding energized hydrogen atoms (EH about 23 kcal mol−1) to the double bond of either cyclopentane or 1,4-pentadiene. Based on the extensive steady-state RRKM calculations employing the experimental data from this work as well as from the literature, the threshold energies for the cyclopentyl ring opening and closure are 32 ± 0.3 and 16.2 ± 0.3 kcal mol−1, respectively. The entropy of activation for the ring opening is close to zero.  相似文献   

3.
The hydrocarbons 1‐cyclopentylidene‐1a,9b‐dihydro‐1H ‐cyclopropa[l ]phenanthrene and 1‐cyclobutylidene‐1a,9b‐dihydro‐1H ‐cyclopropa[l ]phenanthrene undergo photolysis in solution at ambient temperature to produce cyclohexyne and cyclopentyne, respectively. These strained cycloalkynes, formed via the putative cycloalkylidenecarbenes, were intercepted as Diels–Alder adducts. Calculations at the CCSD(T)/cc‐pVTZ//B3LYP/6‐31+G* level of theory show that singlet cyclopentylidenecarbene has to overcome a barrier of 9.1 kcal mol−1 to rearrange into cyclohexyne (with ΔE for ring expansion=−15.1 kcal mol−1). By contrast, cyclobutylidenecarbene only needs to surmount a barrier of 1.6 kcal mol−1 to rearrange into cyclopentyne (with ΔE for ring expansion=−6.2 kcal mol−1).  相似文献   

4.
The photochemistry of 1,2‐dihydro‐1,2‐azaborinine derivatives was studied under matrix isolation conditions and in solution. Photoisomerization occurs exclusively to the Dewar valence isomers upon irradiation with UV light (>280 nm) with high quantum yield (46 %). Further photolysis with UV light (254 nm) results in the formation of cyclobutadiene and an iminoborane derivative. The thermal electrocyclic ring‐opening reaction of the Dewar valence isomer back to the 1,2‐dihydro‐1‐tert‐butyldimethylsilyl‐2‐mesityl‐1,2‐azaborinine has an activation barrier of (27.0±1.2) kcal mol−1. In the presence of the Wilkinson catalyst, the ring opening occurs rapidly and exothermically (ΔH=(−48±1) kcal mol−1) at room temperature.  相似文献   

5.
In the title compound [systematic name: 3‐(azaniumylcarbamoyl)pyridinium dichloride], C6H9N3O2+·2Cl, the ions are connected by N—H...Cl hydrogen bonds to form layers and C—H...Cl interactions expand the layers into a three‐dimensional net. The energies of the N—H...Cl interactions range from typical for very weak interactions (0.17 kcal mol−1) to those observed for relatively strong interactions (29.1 kcal mol−1). C—H...Cl interactions can be classified as weak and mildly strong (energies ranging from 2.2 to 8.2 kcal mol−1). Despite the short contacts existing between the parallel aromatic rings of the cations, π–π interactions do not occur.  相似文献   

6.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

7.
In the title compound, C5H6Br2N2O2, all atoms except for the methyl group lie on a mirror plane in the space group Pnma (No. 62). All bond lengths are normal and the five‐membered ring is planar by symmetry. Two short intermolecular N—Br...O=C contacts [Br...O = 2.787 (2) and 2.8431 (19) Å] are present, originating primarily from the O‐atom lone pairs donating electron density to the antibonding orbitals of the N—Br bonds (delocalization energy transfers 3.27 and 2.11 kcal mol−1). The total stabilization energies of the Br...O interactions are 3.4828 and 2.3504 kcal mol−1.  相似文献   

8.
《Chemical physics letters》1999,291(3-4):224-232
A theoretical study of C3Cl and C3Cl+ isomers has been carried out. The global minimum for C3Cl is a cyclic C2V species (a three-membered ring with an exocyclic chlorine atom). However, a quasi-linear CCCCl structure is predicted to lie only 3-5 kcal mol−1 higher. This quasi-linear structure is floppy, since the linear arrangement lies only 2-3 kcal mol−1 higher in energy. The cyclic and open-chain isomers have dipole moments of 1.986 and 3.363 D, respectively. In C3Cl+ the global minimum is a linear singlet species, the singlet cyclic isomer lying about 19 kcal mol−1 higher. The ionization potentials of cyclic and open-chain C3Cl are estimated to be 9.17 and 8.21 eV, respectively, suggesting that these species should be easily ionized if present in the interstellar medium.  相似文献   

9.
The Unimolecular mass spectrometric fragmentations of the molecular ions of 1,3-diphenylpropane, 1-(7-cycloheptatrienyl)-2-phenylethane and the 1-phenyl-2-tolylethanes and their [d5]phenyl analogues have been investigated by metastable ion techniques and measurements of ionization and appearance energies. By comparing the formation of [C7H7]+, [C7H8]+?, [C8H8]+? and [C8H9]+ it is shown that the molecular ions of the four diaryl isomers do not undergo ring expansion reactions of the aromatic nuclei prior to these fragmentations. Conversely, the molecular ions of the cycloheptatrienyl isomer suffer in part a contraction of the 7-membered ring. From these results and from the measured ionization and appearance energies lower limits to the activation energies of these skeletal isomerizations have been estimated yielding E > 33±5 kcal mol?1 formonoalkylbenzene, E > 20 2±5 kc mol?1 for 7-alkylcycloheptatriene and E > 40±5 kcal mol?1 for dialkylvbenzene positive radical ions. Upper limits can be deduced from literature evidence yielding E < 45 kcal mol?1 for monoalkylbenzene and E < 53 kcal 4mol?1 for dialkylbenzene positive radical ions. The activation energy thus estimated for monoalkylbenzene is in excellent agreement with the recently calculated value(s) for the toluene ion.  相似文献   

10.
Ab initio calculations at the MP2 and CCSD(T) levels of theory have disclosed the conceivable existence of fluorine‐coordinated complexes of HHeF with alkali‐metal ions and molecules M+ (M+=Li+–Cs+), M+–OH2, M+–NH3 (M+=Li+, Na+), and MX (M=Li, Na; X=F, Cl, Br). All these ligands L induce a shortening of the H? He distance and a lengthening of the He? F distance accompanied by consistent blue‐ and redshifts, respectively, of the H? He and He? F stretching modes. These structural effects are qualitatively similar to those predicted for other investigated complexes of the noble gas hydrides HNgY, but are quantitatively more pronounced. For example, the blueshifts of the H? He stretching mode are exceptionally large, ranging between around 750 and 1000 cm?1. The interactions of HHeF with the ligands investigated herein also enhance the (HHe)+F? dipole character and produce large complexation energies of around 20–60 kcal mol?1. Most of the HHeF–L complexes are indeed so stable that the three‐body dissociation of HHeF into H+He+F, exothermic by around 25–30 kcal mol?1, becomes endothermic. This effect is, however, accompanied by a strong decrease in the H? He? F bending barrier. The complexation energies, ΔE, and the bending barriers, E*, are, in particular, related by the inverse relationship E*(kcal mol?1)=6.9exp[?0.041ΔE(kcal mol?1)]. Therefore the HHeF? L complexes, which are definitely stable with respect to H+He+F+L (ΔE≈25–30 kcal mol?1), are predicted to have bending barriers of only 0.5–2 kcal mol?1. Overall, our calculations cast doubt on the conceivable stabilization of HHeF by complexation.  相似文献   

11.
The working mechanism including the photoisomerization and thermal isomerization steps of a chiral N-alkyl imine-based motor synthesized by Lehn et al. are revealed by MS-CASPT2//CASSCF and MS-CASPT2//(TD-)DFT methods. For the photoisomerization process of the imine-based motor, it involves both the bright (π,π*) state and the dark (n,π*) state. In addition, the MECI has similar geometry and energy to the minimum of the S1 state, which shows that the process is barrierless and keeps the unidirectionality of rotation well; the result confirms the imine-based motor is a good candidate for a light-driven molecular rotary motor. For the thermal isomerization process of the imine-based motor, there are two even isomerization paths: one with the mechanism of the in-plane N inversion, the energy barriers of which are 29.6 kcal mol−1 at MS3-CASPT2//CAM-B3LYP level and 29.2 kcal mol−1 at MS3-CASPT2//CASSCF level; the other with the mechanism of ring inversion of the cycloheptatriene moiety, with energy barriers of 28.1 kcal mol−1 at MS3-CASPT2//CAM-B3LYP level and 18.1 kcal mol−1 at MS3-CASPT2//CASSCF level. According to the structural feature of the stator moiety, the imine molecule can be used as a two-step or a four-step light-driven rotary motor.  相似文献   

12.
Herein we present the first superbase MHPN with two interacting P‐ylide entities. Unlike classical proton sponges, this novel compound class has carbon atoms as basicity centers which are forced into close proximity by a naphthalene scaffold. The bisylide exhibits an experimental pK BH+ value of 33.3±0.2 on the MeCN scale and a calculated gas‐phase proton affinity of 277.9 kcal mol−1 (M062X/6‐311+G**//M062X/6‐31G*+ZPVE method) exceeding that of the corresponding monoylide by nearly 15 kcal mol−1. The origin of the unexpectedly high basicity of the new bisylide was investigated by NMR spectroscopic methods, single‐crystal X‐ray diffraction as well as theoretical calculations and can be partly attributed to the rapid exchange of the “acidic” proton between the two basic carbon atoms after protonation.  相似文献   

13.
The equilibrium structures, vibrational spectra, and heats of formation for CH3OCl and CH3ClO have been estimated using high levels of ab initio molecular orbital theory. The lowest energy isomer is found to be CH3OCl, and its heat of formation is estimated to be −13.5±2 kcal mol−1, in good agreement with bond additivity estimates. Results for the CH3ClO isomer are presented for the first time, and it is found to be 40.5 kcal mol−1 higher in energy relative to CH3OCl. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 29–35, 1999  相似文献   

14.
《Thermochimica Acta》1987,122(2):289-294
The standard enthalpy of formation of potassium metasilicate (K2SiO3), determined by hydrofluoric acid solution calorimetry, was found to be ΔHof,298 = −363.866±0.421 kcal mol−1 (−1522.415±1.762 kj mol−1). The standard enthalpy of formation from the oxides was found to beΔHo298 = −64.786±0.559 kcal mol−1 (−271.065±2.339 kJ mol−1).These experimentally determined data were combined with data from the literature to calculate the Gibbs energies of formation and equilibrium constants of formation over the temperature range of the literature data. The standard enthalpies of formation and Gibbs energies of formation are given as functions of temperature. The standard Gibbs energy of formation is ΔGf,298.150 = −341.705 kcal mol−1 (−1429.694 kJ mol−1).  相似文献   

15.
Using the molecular tailoring and function-based approaches allows one to divide the energy of the O─H⋯O═C resonance-assisted hydrogen bond in a series of the β-diketones into resonance and hydrogen bonding components. The magnitude of the resonance component is assessed as about 6 kcal mol−1. This value increases by ca. 1 kcal mol−1 on going from the weak to strong resonance-assisted hydrogen bonding. The magnitude of the hydrogen bonding component varies in the wide range from 2 to 20 kcal mol−1 depending on the structure of the β-diketone in question.  相似文献   

16.
17.
The kinetics and mechanism for the thermal decomposition of diketene have been studied in the temperature range 510–603 K using highly diluted mixtures with Ar as a diluent. The concentrations of diketene, ketene, and CO2 were measured by FTIR spectrometry using calibrated standard mixtures. Two reaction channels were identified. The rate constants for the formation of ketene (k1) and CO2 (k2) have been determined and compared with the values predicted by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory for the branching reaction. The first-order rate constants, k1 (s−1) = 1015.74 ± 0.72 exp(−49.29 (kcal mol−1) (±1.84)/RT) and k2 (s−1) = 1014.65 ± 0.87 exp(−49.01 (kcal mol−1) (±2.22)/RT); the bulk of experimental data agree well with predicted results. The heats of formation of ketene, diketene, cyclobuta-1,3-dione, and cyclobuta-1,2-dione at 298 K computed from the G2M scheme are −11.1, −45.3, −43.6, and −40.3 kcal mol−1, respectively. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 580–590, 2007  相似文献   

18.
Reactions of gold anions and cations generated by laser desorption/ionization were studied in the FTICR spectrometer. Au associated with C6F6 to give the novel Au(C6F6) complex, whose binding energy was estimated to be 24 ± 4 kcal mol−1 from analysis of the radiative association (RA) kinetics. Au+ associated with C6F5H to give Au+(C6F5H), with binding energy estimated to be 31 kcal mol−1. Au+ reacted with C6H6 to form the well known Au+(C6H6) and Au+(C6H6)2 complexes. The observation of rapid charge transfer from Au+(C6H6) to C6H6 was interpreted as showing that benzene binds more strongly to neutral Au than to Au+. The neutral Au–C6H6 bond is accordingly concluded to be stronger than about 70 kcal mol−1.  相似文献   

19.
A theoretical kinetic study of the thermal decomposition of 1‐chlorohexane in gas phase between 600 and 1000 K was performed. Transition‐state theory and unimolecular reaction rate theory were combined with molecular information provided by quantum chemical calculations. Particularly, the B3LYP, BMK, M05–2X, and M06–2X formulations of the density functional theory (DFT) and the high‐level ab initio methods G3B3 and G4 were employed. The possible reaction channels for the thermal decomposition of 1‐chlorohexane were investigated, and the reaction takes place through the elimination of HCl with the formation of 1‐hexene. The derived high‐pressure limit rate coefficients are k (600–1000 K) = (8 ± 5) × 1013 exp[‐((56.7 ± 0.4) kcal mol−1/RT )] s−1. The pressure effect over the reaction was analyzed from the calculation of the low‐pressure limit rate coefficients and the falloff curves. In addition, the standard enthalpies of formation at 298 K of −46.9 ± 1.5 kcal mol−1 for 1‐chlorohexane and 5.8 ± 1.5 kcal mol−1 for C6H13 radical were derived from isodesmic and isogiric reactions at high levels of theory.  相似文献   

20.
CH3NH2 thermal decomposition is shown to provide a suitable NH2 radical source for spectroscopic and kinetic shock tube studies. Using this precursor, the absorption coefficient of the NH2 radical at a detection wavelength of 16739.90 cm−1 has been determined. In the temperature range 1600–2000K the low‐pressure absorption coefficient is described by the polynominal equation: kNH2=3.953×1010/T 3+7.295×105/T 2−1.549×103/T [atm−1 cm−1] The uncertainty of the determined absorption coefficient is estimated to be ±10%. The rate of the thermal decomposition reaction CH3NH2+M → CH3+NH2+M is determined over the temperature range 1550–1900 K and at pressures near 1.6 atm. The rate coefficient was found to be: k1=2.51×1016 exp(−28430/T) [cm3 mol−1 s−1] The uncertainty of the determined rate coefficients is estimated to be ±20%. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 323–330, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号