首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics and mechanism of oxidation of L‐serine by manganese(III) ions have been studied in aqueous sulfuric acid medium at 323 K. Manganese(III) sulfate was prepared by an electrolytic oxidation of manganous sulfate in aqueous sulfuric acid. The dependencies of the reaction rate are: an unusual one and a half‐order on [Mn(III)], first‐order on [ser], an inverse first‐order on [H+], and an inverse fractional‐order on [Mn(II)]. Effects of complexing agents and varying solvent composition were studied. Solvent isotope studies in D2O medium were made. The dependence of the reaction rate on temperature was studied and activation parameters were computed from Arrhenius‐Eyring plots. A mechanism consistent with the observed kinetic data has been proposed and discussed. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 525–530, 1999  相似文献   

2.
The chromic acid oxidation of a mixture of oxalic acid and anilides proceeds much faster than that of either of the two substrates alone. The oxidation kinetics of acetanilide, p‐methyl‐, p‐chloro‐, and p‐nitroacetanilides by Cr(VI) in the presence of oxalic acid in aqueous acetic acid medium follows first‐order, zero‐order, and second‐order dependence in [oxidant], [substrate], and in [oxalic acid], respectively, while the oxidation kinetics of benzanilide, p‐methyl‐, p‐chloro‐, and p‐nitrobenzanilides follow first order in [oxidant] and fractional order each in [substrate] and [oxalic acid] and yields corresponding azobenzenes and benzaldehydes in the case of benzanilide and substituted benzanilides as the main products of oxidation. Aluminium ions suppress the reaction. The intermediate is believed to be formed from the anilide and a chromic acid‐oxalic acid complex. In the proposed mechanism, the rate‐limiting step involves the direct reduction of Cr(VI) to Cr(III). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 21–28, 2001  相似文献   

3.
Oxidations of n‐propyl, n‐butyl, isobutyl, and isoamyl amines by bromamine‐T (BAT) in HCl medium have been kinetically studied at 30°C. The reaction rate shows a first‐order dependence on [BAT], a fractional‐order dependence on [amine], and an inverse fractional‐order dependence on [HCl]. The additions of halide ions and the reduction product of BAT, p‐toluenesulfonamide, have no effect on the reaction rate. The variation of ionic strength of the medium has no influence on the reaction. Activation parameters have been evaluated from the Arrhenius and Eyring plots. Mechanisms consistent with the preceding kinetic data have been proposed. The protonation constant of monobromamine‐T has been evaluated to be 48 ± 1. A Taft linear free‐energy relationship is observed for the reaction with ρ* = −12.6, indicating that the electron‐donating groups enhance the reaction rate. An isokinetic relationship is observed with β = 350 K, indicating that enthalpy factors control the reaction rate. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 776–783, 2000  相似文献   

4.
The kinetics and mechanism of oxidation of poly(ethylene glycol) (PEG) by the permanganate ion as a multiequivalent oxidant in aqueous perchlorate solutions at an ionic strength of 2.0 mol dm−3 has been investigated spectrophotometrically. The reaction kinetics was found to be of complex in nature. The pseudo–first‐order plots showed curves of inverted S‐shape, consisting of two distinct stages throughout the entire course of reaction. The first stage was relatively slow, followed by a fast reaction rate at longer time periods. The first‐order dependence in [MnO4], fractional first‐order dependence in [H+], and fractional first‐order kinetics in the PEG concentration for the first stage have been revealed in the absence of the Ru(III) catalyst. The influence of the Ru(III) catalyst on the oxidation kinetics has been examined. The oxidation was found to be catalyzed by the added Ru(III) catalyst. The First‐order dependence on the catalyst and zero order with respect to the oxidant concentrations have been observed. The kinetic parameters have been evaluated, and a tentative reaction mechanism consistent with the kinetic results is suggested and discussed.  相似文献   

5.
Manganese(III) (Mn(III)) has been stabilized in weakly acidic solution by means of pyrophosphate and the nature of the complex was elucidated spectrophotometrically. Stoichiometry of Mn(III)‐oxidation of levodopa and methyl dopa in pyrophosphate medium was established in the pH range 2.5–4.0 by iodometric and spectrophotometric methods. The reaction shows a distinct variation in kinetic order with respect to [Mn(III)], a first‐order dependence in the pH range 1.9–2.6, decreasing to fractional order above pH 3. Other common features include first‐order dependence on [dopa], positive fractional order dependence on [H+], and inverse first‐order dependence on [Mn(III)] in the pH range studied. The effects of varying ionic strength and solvent composition were studied. Added ions such as SO42? and ClO4? alter the reaction rate, probably due to the change in the formal redox potential of Mn(III)–Mn(II) couple because of the changes in coordination environment of the oxidizing species. Evidence for the transient existence of the free radical intermediate is given. Cyclic voltametric sensing of levodopa and methyl dopa has ruled out the formation of dopaquinones as oxidation products in the pH range studied. Activation parameters have been evaluated using the Arrhenius and Erying plots. Mechanisms consistent with the kinetic data have been proposed and discussed. These studies are expected to throw some light on dopa metabolism. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 449–457, 2001  相似文献   

6.
The oxidation kinetics of 2‐butanol by alkaline hexacyanoferrate(III) catalyzed by sodium ruthenate has been studied spectrophotometrically. The initial rates method was used for kinetic analysis. The reaction rate shows a fractional‐order in [hexacyanoferrate(III)] and [substrate] and a first‐order dependence on [Ru(VI)]. The dependence on [OH] is rather more complicated. The kinetic data suggest a reaction mechanism involving two active catalytic species. Each one of these species forms an intermediate complex with the substrate. The attack of these complexes by hexacyanoferrate(III), in a slow step, produces ruthenium(V) complexes which are oxidized in subsequent steps to regenerate the catalyst species. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 1–9, 1999  相似文献   

7.
A kinetic study of oxidation of 2‐phenylethylamine (PEA), a bioactive compound, with potent oxidant, N‐bromosuccinimide (NBS) has been carried out in HCl and NaOH media at 313 K. The experimental rate laws obtained are: ‐d [NBS] /dt = k[NBS][PEA][H+] in hydrochloric acid medium and ‐d [NBS]/dt = k[NBS][PEA]x[OH?]y in alkaline medium where x and y are less than unity. Accelerating effect of [Cl?], and retardation of the added succinimide on the reaction rate have been observed in acid medium. Variation of ionic strength of the medium shows negligible effect on rate of reaction in both media. Decrease in dielectric permittivity of the medium decreased the rate in both media. The stoichiometry of the reaction was found to be 1:1 in acid medium and 1:2 in the case of alkaline medium. The oxidation products of PEA were identified as the corresponding aldehyde and nitrile in acid and alkaline medium, respectively. The reactions were studied at different temperatures and the activation parameters have been evaluated. The reaction constants involved in the proposed mechanisms were computed. The reaction was found to be faster in alkaline medium in comparison with the acid medium, which is attributed to the involvement of different oxidizing species. The proposed mechanisms and the derived rate laws are consistent with the observed experimental results.  相似文献   

8.
The kinetics of oxidation of Isoniazid (INH) by sodium N‐haloarenesulfonamidates, chloramine‐T (CAT), bromamine‐T (BAT), chloramine‐B (CAB), and bromamine‐B (BAB), has been studied in alkaline medium at 303 K. The oxidation reaction follows identical kinetics with a first‐order dependence on each [oxidant] and [INH] and an inverse fractional‐order on [OH−:]. Addition of the reaction product (p‐toluenesulfonamide or benzenesulfonamide) had no significant effect on the reaction rate. Variation of ionic strength and addition of halide ions have no influence on the rate. There is a negative effect of dielectric constant of the solvent. Studies of solvent isotope effects using D2O showed a retardation of rate in the heavier medium. The reaction was studied at different temperatures, and activation parameters have been computed from the Arrhenius and Eyring plots. Isonicotinic acid was identified as the oxidation product by GC‐MS. A two‐pathway mechanism is pro‐posed in which RNHX and the anion RNX interact with the substrate in the rate‐limiting steps. The mechanism proposed and the derived rate laws are consistent with the observed kinetics. The rate of oxidation of INH increases in the order: BAT > BAB > CAT > CAB. This effect is mainly due to electronic factors. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 221–230, 2000  相似文献   

9.
The kinetics of oxidation of ethanolamines, monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA), by sodium N‐bromobenzenesulfonamide or bromamine‐B (BAB) in alkaline buffer medium (pH 8.7–12.2) has been studied at 40°C. The three reactions follow identical kinetics with first‐order in [oxidant] and fractional‐order each in [substrate] and [OH?]. Under comparable experimental conditions, the rate of oxidation increases in the order: DEA > TEA > MEA. The added reaction product, benzenesulfonamide, retards the reaction rate. The addition of halide ions and the variation of ionic strength of the medium have no significant effect on the rate. The dielectric effect is negative. The solvent isotope effect k′(H2O)/k′(D2O) ≈ 0.92. Activation parameters for the composite reaction and for the rate‐limiting step were computed from the Eyring plots. Michaelis‐Menten type of kinetics is observed. The formation and decomposition constants of ethanolamine‐BAB complexes are evaluated. An isokinetic relationship is observed with β = 430 K indicating that enthalpy factors control the rate. For each substrate, a mechanism consistent with the kinetic data has been proposed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 480–490, 2001  相似文献   

10.
Kinetics of oxidation of pantothenic acid (PA) by sodium N‐chloro‐p‐toluenesulfonamide or chloramine‐T (CAT) in the presence of HClO4 and NaOH (catalyzed by OsO4) has been investigated at 313 K. The stoichiometry and oxidation products are same in both media; however, their kinetic patterns were found to be different. In acid medium, the rate shows first‐order dependence on [CAT]o, fractional‐order dependence on [PA]o, and inverse fractional‐order on [H+]. In alkaline medium, the rate shows first‐order dependence each on [CAT]o and [PA]o and fractional‐order dependence on each of [OH?] and [OsO4]. Effects of added p‐toluenesulfonamide and halide ions, varying ionic strength, and dielectric constant of medium as well as solvent isotope on the rate of reaction have been investigated. Activation parameters were evaluated, and the reaction constants involved in the mechanisms have been computed. The proposed mechanisms and the derived rate laws are consistent with the observed kinetics. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 201–210, 2005  相似文献   

11.
The complex (Trpy)RuCl3 (Trpy = 2,2′:6′,2″‐terpyridine) reacts with alkaline hexacyanoferrate(III) to form a terpyridyl ruthenium(IV)‐oxo complex that catalyzes the oxidation of 2‐propanol and benzyl alcohol by alkaline hexacyanoferrate(III). The reaction kinetics of this catalytic oxidation have been studied photometrically. The reaction rate shows a first‐order dependence on [RU(IV)], a zero‐order dependence on [hexacyanoferrate(III)], a fractional order in [substrate], and a fractional inverse order in [HO]. The kinetic data suggest a reaction mechanism in which the catalytic species and its protonated form oxidize the uncoordinated alcohol in parallel slow steps. Isotope effects, substituent effects, and product studies suggest that both species oxidize alcohol through similar pericyclic processes. The reduced catalytic intermediates react rapidly with hexacyanoferrate(III) and hydroxide to reform the unprotonated catalytic species. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 760–770, 2000  相似文献   

12.
The deoximation kinetics of some oximes was studied by using cetyltrimethylammonium dichromate (CTADC) in dichloromethane in the presence of acetic acid and a cationic surfactant. The rate of reaction is highly sensitive to the change in [CTADC], [oxime], [acid], [surfactant], polarity of the solvents, and reaction temperature. The reaction is found to be catalyzed by acid with an appreciable uncatalytic rate. The reaction is first order with respect to substrate. With increase in CTADC concentration, rate of the reaction increases with a fractional order dependency with respect to oxidant. Consistent to the observation, a mechanism has been proposed in which the substrate forms a complex with CTADC in the rate determining step followed by decomposition with a fast process to yield corresponding carbonyl compounds. The structure of the substituents has also a significant effect on the rate constant. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 482–488, 2011  相似文献   

13.
Kinetics of oxidation of diethylamine (DEA) by Bromamine‐B (BAB) has been investigated at 303 K in acid solution with Ru(III) as catalyst. The oxidation behavior obeys the rate law, rate = k [BAB] [DEA] [Ru(III)] [H+]−x where ‘x’ is less than unity indicating retardation of rate by [H+]. Added halide ions, the reaction product benzenesulphonamide, variation of ionic strength and dielectric constant of the medium do not have any significant effect on the rate. The protonation constant of monobromamine‐B evaluated for the reaction is 32.3 at 303 K. Activation parameters have been evaluated from Arrhenius plot. A mechanism consistent with experimental results has been proposed. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 744–752, 1999  相似文献   

14.
The kinetics and mechanism of the acid‐catalyzed hydrolysis of di‐2‐chloroaniline phosphate ester were studied in 0.5–7.0 mol dm?3 hydrochloric acid at 80°C in 20/80 (v/v) dioxane–water medium. The log rate profile shows rate maximum at 4.0 mol dm?3 hydrochloric acid. The results show that di‐2‐chloroaniline phosphate is reactive mainly via conjugate acid species. Ionic strength data show a positive salt effect. The effect of different parameters such as temperature, solvent, and substrate concentration on the rate of hydrolysis was studied. Molecularity and order of the reaction have been supported by Arrhenius parameters, the Zucker–Hammett hypothesis. The rate values shown by experimental and theoretical computational hold good agreements in the entire acid range. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 126–131, 2010  相似文献   

15.
Tungsten(VI) catalyzes perborate oxidation of S‐phenylmercaptoacetic acid. The catalyzed oxidation is first order with respect to the oxidant, independent of [H+], and displays Michaelis–Menten dependence on [PhSCH2COOH] and [W(VI)]. The reaction requires time for equilibration between the oxidant and the catalyst. Oxodiperoxotungsten(VI) (WO(O2)2) is the probable oxidizing species, and decomposition of PhSCH2COOH WO(O2)2 complex is rate limiting. At low [PhSCH2COOH] and fixed [W(VI)], the oxidation follows a second order rate law. Operation of the linear free energy relationship in the oxidation has been tested with a few electron withdrawing and a few electron donating substituents. At high temperature, electron‐withdrawing groups decelerate and electron releasing groups accelerate the oxidation, the variation in rate with the substituent is in conformity with the Hammett equation. But at low temperature, electron donating substituents fail to accelerate the oxidation. The results are rationalized. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 675–681, 1999  相似文献   

16.
The keto–enol tautomerism of 3‐chloro‐pentane‐2,4‐dione (ClPD) was studied in aqueous micellar solutions of cationic, anionic, and nonionic surfactants. The enol of ClPD tautomerizes rapidly in water to the equilibrium proportions of the keto form, KE=0.55; whereas the keto–enol conversion of 3‐ethyl‐pentane‐2,4‐dione (EPD) is a much slower reaction than the enol nitrosation. Kinetics of enol –nitrosation of both ClPD and EPD in aqueous acid medium using nitrous acid shows first‐order dependence upon [ketone] and linear or curve relationships of the observed rate constant, ko, as a function of [nitrite] or [H+]; the observed behavior depends on the molecular structure of diketone and varies with the experimental conditions. The reaction is strongly catalyzed by Cl?, Br?, or SCN?, and the observed rate constant shows a curve dependence on [Br?] or [SCN?], which is more pronounced at high acidity. The results are consistent with a reaction mechanism in which the nitrosation occurs initially on the enol–oxygen and releasing a proton to form a chelate–nitrosyl complex intermediate in steady state. Fine differences on the mechanistic spectrum of enols nitrosation are considered on the basis of the molecular structure of the diketone. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 668–679, 2012  相似文献   

17.
The kinetics of micellar catalyzed oxidation of oxalic acid [OA] by N-bromophthalimide was studied in the presence of perchloric acid at 308 K. The orders of reaction with respect to [Oxalic acid], [oxidant], and [H+] were found to be fractional, first and negative fractional order respectively. Cationic micelles of cetyltrimethylammonium bromide increased the reaction rate. The effect of phthalimide, mercuric acetate and inorganic salts, that is, [Cl?][Br?] has also been done. The rate reaction decreases with increasing dielectric constant of the medium. The results are treated quantitatively in terms of Piszkiewicz and Berezin models. The rate constant (Kobs), cooperatively index (n), binding constant (ks + ko), and corresponding activation parameters (Ea, ΔH#, ΔS#, and ΔG#) were determined. A suitable mechanism consistent with the experimental finding has been proposed.  相似文献   

18.
The kinetics of oxidation of dimethylsulphoxide (DMSO) by sodium N-bromobenzenesulphonamide or bromamine-B (BAB) has been studied in HClO4, HCl and NaOH media, at 35°C, with OsO4 as a catalyst in the latter medium. In acid medium, the rate shows a first order dependence on [BAB] and second order in [H+], but Is Independent of substrate concentration. Alkali retards the reaction (Inverse first order) and the rate is independent of oxidant concentration, but shows fractional order in [DMSO] and depends on (0sO4]2. The solvent isotope effect was studied by using D2O. Activation parameters have also been determined. Mechanisms proposed and the derived rate laws are consistent with the observed kinetics.  相似文献   

19.
The kinetics and mechanism of bromination of phenol and its substituents, viz. 4‐chlorophenol, 4‐bromophenol, 4‐methylphenol, and 4‐methoxyphenol by N‐bromophthalimide (NBP) in the presence of mercuric acetate in the temperature range of 303–318 K in aqueous acetic acid medium have been investigated. The reaction follows first‐order dependence on [NBP] and fractional order dependence of rate on [Phenol]. The activation parameters have been evaluated, and based on the observed kinetic results the probable mechanism has been proposed. Observed kinetic features and Hammett's reaction constant (ρ) suggests that bromination occurs through electrophilic substitution of bromonium ion (Br+) into the aromatic ring in the transition state. Large negative entropy of activation values probably suggests the rigid nature of transition state.  相似文献   

20.
The kinetics of formation of N‐diketohydrindylidenehistidinatocopper(II) complex has been investigated in the presence of cationic cetyltrimethylammonium bromide (CTAB) surfactant in aqueous medium (pH = 5.0). Similarly in aqueous solution, the reaction followed irreversible first‐order kinetics with respect to [Ninhydrin]. Although the reaction mechanism remained unaltered by micelles, a typical kψ‐[CTAB] profile was observed, that is, with a progressive increase in [CTAB], the reaction rate increased, reached a maximum value, and then decreased. The results are treated quantitatively in terms of the kinetic pseudo‐phase model. Activation parameters were also evaluated and a large decrease in ΔS# shows the formation of a well‐structured activated complex. It was found that anionic sodium dodecyl sulphate (SDS) and non‐ionic Triton X‐100 (TX‐100) surfactants have no effect on the reaction. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 729–736, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号