首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Directing group assistance provided a paradigm for controlling site-selectivity in transition metal-catalyzed C–H functionalization reactions. However, the kinetically and thermodynamically favored formation of 5-membered metallacycles has greatly hampered the selective activation of remote C(sp3)–H bonds via larger-membered metallacycles. Recent development to achieve remote C(sp3)–H functionalization via the C–H metallation process largely relies on employing specific substrates without accessible proximal C–H bonds. Encouragingly, recent advances in this field have enabled the selective functionalization of remote aliphatic C–H bonds in the presence of equally accessible proximal ones by taking advantage of the switch of the regiodetermining step, ring strain of metallacycles, multiple non-covalent interactions, and favourable reductive elimination from larger-membered metallacycles. In this review, we summarize these advancements according to the strategies used, hoping to facilitate further efforts to achieve site- and even enantioselective functionalization of remote C(sp3)–H bonds.

Recent advances in site-selective functionalization of remote aliphatic C–H bonds in organometallic pathways are summarized.  相似文献   

2.
The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones. The use of a base is essential for the reaction to proceed. The reaction proceeds, even in the absence of a ligand, and under mild reaction conditions (40 °C). An electron-donating group on the aromatic ring facilitates the reaction. The reaction was also applicable to carbamate (C–O bond activation), methylthio (C–S bond activation), and cyano (C–CN bond activation) groups as leaving groups.

The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones.  相似文献   

3.
The late-stage introduction of diverse heterocycles onto complex small molecules enables efficient access to new medicinally relevant compounds. An attractive approach to such a transformation would utilize the ubiquitous aliphatic C–H bonds of a complex substrate. Herein, we report a system that enables direct C–H heteroarylation using a stable, commercially available O-alkenylhydroxamate with heterocyclic sulfone partners. The C–H heteroarylation proceeds efficiently with a range of aliphatic substrates and common heterocycles, and is a rare example of heteroarylation of strong C–H bonds. Importantly, the present approach is amenable to late-stage functionalization as the substrate is the limiting reagent in all cases.

The late-stage introduction of diverse heterocycles onto complex small molecules enables efficient access to new medicinally relevant compounds.  相似文献   

4.
A dinickel(0)–N2 complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp2)–H and C(sp2)–O bonds. Stabilized by a Ni–μ–N2–Na+ interaction, it activates C–H bonds of unfunctionalized arenes, affording nickel–aryl and nickel–hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods. Our experimental results, including product analysis and kinetic measurements, strongly suggest that this C(sp2)–H activation does not follow the typical oxidative addition mechanism occurring at a low-valent single metal centre. Instead, via a bimolecular pathway, two powerfully reducing nickel ions cooperatively activate an arene C–H bond and concomitantly reduce two Lewis acidic alkali metals under ambient conditions. As a novel synthetic protocol, nickel(ii)–aryl species were directly synthesized from nickel(ii) precursors in benzene or toluene with excess Na under ambient conditions. Furthermore, when the dinickel(0)–N2 complex is accessed via reduction of the nickel(ii)–phenyl species, the resulting phenyl anion deprotonates a C–H bond of glyme or 15-crown-5 leading to C–O bond cleavage, which produces vinyl ether. The dinickel(0)–N2 species then cleaves the C(sp2)–O bond of vinyl ether to produce a nickel(ii)–vinyl complex. These results may provide a new strategy for the activation of C–H and C–O bonds mediated by a low valent nickel ion supported by a structurally rigidified ligand scaffold.

A structurally rigidified nickel(0) complex was found to be capable of cleaving both C(sp2)–H and C(sp2)–O bonds.  相似文献   

5.
The cleavage of aromatic C–C bonds is central for conversion of fossil fuels into industrial chemicals and designing novel arene functionalisations through ring opening, expansion and contraction. However, the current progress is hampered by both the lack of experimental examples of selective oxidative addition of aromatic C–C bonds and limited understanding of the factors that favour insertion into the C–C rather than the C–H bonds. Here, we describe the comprehensive mechanism of the only reported chemo- and regioselective insertion of a transition metal into a range of substituted arene rings in simple iridium(i) complexes. The experimental and computational data reveal that this ring cleavage requires both reversible scission of a benzylic C–H bond and cooperativity of two Ir centres sandwiching the arene in the product-determining intermediate. The mechanism explains the chemoselectivity and scope of this unique C–C activation in industrially important methylarenes and provides a general insight into the role of metal–metal cooperativity in the cleavage of unsaturated C–C bonds.

The detailed mechanism of iridium-mediated C–C cleavage in unactivated arenes reveals the key factors enabling the process and helps predict the scope of the cleavage reaction.  相似文献   

6.
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.

Aliphatic aldehydes are among the most common structural units in organic and medicinal chemistry research. Direct C–H functionalization has enabled efficient and site-selective derivatization of aliphatic aldehydes.

Simple aliphatic functional groups enrich the skeletal backbones of many natural products, pharmaceuticals, and other industrial materials, influencing the utility and applications of these substances and dictating their reactivity and synthetic modification pathways. Aliphatic aldehydes are some of the most ubiquitous structural units in organic materials.1 Their relevance in nature and industry alike, combined with their reactivity and synthetic versatility, attracted much attention from the synthetic organic and medicinal chemistry communities over the years (Fig. 1).2 Efficient means to the functionalization of these molecules have always been highly sought after.Open in a separate windowFig. 1Select aliphatic aldehyde-containing medicines and biologically active molecules.Traditionally, scientists have utilized the high reactivity of the aldehyde moiety in derivatizing a variety of functional groups by the means of red-ox and nucleophilic addition reactions. The resourceful moiety was also notoriously used to install functional groups at the α-position via condensation and substitution pathways.3 Although β-functionalization is just as robust, it has generally been more restrictive as it often requires the use of α,β-unsaturated aldehydes.4,5 Hence, transition metal catalysis emerged as a powerful tool to access β-functionalization in saturated aldehydes.6 Most original examples of metal-catalyzed β-C–H functionalization of aliphatic aldehydes required the masking of aldehydes into better metal coordinating units since free unmasked aldehydes could not form stable intermediates with metals like palladium on their own.7 Although the masking of the aldehyde moiety into an oxime, for example, enabled the formation of stable 5-membered palladacycles, affording β-functionalized products, this system requires the installation of the directing group prior to the functionalization, as well as the subsequent unmasking upon the reaction completion, compromising the step economy and atom efficiency of the overall process.8 Besides, some masking and unmasking protocols might not be compatible with select substrates, especially ones rich in functional groups. As a result, the development of a one-step direct approach to the β-C–H functionalization of free aliphatic aldehydes was a demanding target for synthetic chemists.α-Amino acids have been demonstrated as effective transient directing groups (TDGs) in the remote functionalization of o-alkyl benzaldehydes and aliphatic ketones by the Yu group in 2016.9 Shortly after, our group disclosed the first report on the direct β-C–H arylation of aliphatic aldehydes using 3-aminopropanoic acid or 3-amino-3-methylbutanoic acid as a TDG.10 The TDG was found to play a similar role to that of the oxime directing group by binding to the substrate via reversible imine formation, upon which, it assists in the assembly of a stable palladacycle, effectively functionalizing the β-position.11 Since the binding of the TDG is reversible and temporary, it is automatically removed upon functionalization, yielding an efficient and step-economic transformation. This work was succeeded by many other reports that expanded the reaction and the TDG scopes.12–14 However, this system suffers from a significant restriction that demanded resolution; only substitution of methyl C–H bonds of linear aldehydes was made possible via this approach (Scheme 1a–e). The steric limitations caused by incorporating additional groups at the β-carbon proved to compromise the formation of the palladacycle intermediate, rendering the subsequent functionalization a difficult task.12Open in a separate windowScheme 1Pd-catalyzed β-C–H bond functionalization of aliphatic aldehydes enabled by transient directing groups.Encouraged by the recent surge in use of 2-pyridone ligands to stabilize palladacycle intermediates,15,16 we have successfully developed the first example of TDG-enabled Pd-catalyzed methylene β-C–H arylation in primary aldehydes via the assistance of 2-pyridones as external ligands (Scheme 1f). The incorporation of 2-pyridones proved to lower the activation energy of the C–H bond cleavage, promoting the formation of the intermediate palladacycles even in the presence of relatively bulky β-substituents.17 This key advancement significantly broadens the structural scopes and applications of this process and promises future asymmetric possibilities, perhaps via the use of a chiral TDG or external ligand or both. Notably, a closely related work from Yu''s group was published at almost the same time.18We commenced our investigation of the reaction parameters by employing n-pentanal (1a) as an unbiased linear aldehyde and 4-iodoanisole (2a) in the presence of catalytic Pd(OAc)2 and stoichiometric AgTFA, alongside 3-amino-3-methylbutanoic acid (TDG1) and 3-(trifluoromethyl)-5-nitropyridin-2-ol (L1) at 100 °C (ii) sources proved Pd(OAc)2 to be the optimal catalyst, while Pd(TFA)2, PdCl2 and PdBr2 provided only moderate yields (entries 10–12). Notably, a significantly lower yield was observed in the absence of the 2-pyridone ligand, and no desired product was isolated altogether in the absence of the TDG (entries 13 and 14). The incorporation of 15 mol% Pd catalyst was deemed necessary after only 55% yield of 3a was obtained when 10 mol% loading of Pd(OAc)2 was instead used (entry 15).Optimization of reaction conditionsa
EntryPd sourceL (mol%)TDG1 (mol%)Solvent (v/v, mL)Yield (%)
1Pd(OAc)2L1 (30)TDG1 (40)HFIP30
2Pd(OAc)2L1 (30)TDG1 (40)AcOH<5
3Pd(OAc)2L1 (30)TDG1 (40)HFIP/AcOH (1 : 1)28
4Pd(OAc)2L1 (30)TDG1 (40)HFIP/AcOH (9 : 1)47
5Pd(OAc)2L1 (30)TDG1 (40)HFIP/AcOH (1 : 9)<5
6Pd(OAc)2L1 (30)TDG1 (60)HFIP/AcOH (9 : 1)50
7Pd(OAc)2L1 (30)TDG1 (80)HFIP/AcOH (9 : 1)25
8Pd(OAc)2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)70(68)b
9Pd(OAc)2L1 (75)TDG1 (60)HFIP/AcOH (9 : 1)51
10Pd(TFA)2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)60
11PdCl2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)52
12PdBr2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)54
13Pd(OAc)2TDG1 (60)HFIP/AcOH (9 : 1)9
14Pd(OAc)2L1 (60)HFIP/AcOH (9 : 1)0
15cPd(OAc)2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)55
Open in a separate windowaReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd source (15 mol%), AgTFA (0.3 mmol), L1, TDG1, solvent (2.0 mL), 100 °C, 12 h. Yields are based on 1a, determined by 1H-NMR using dibromomethane as an internal standard.bIsolated yield.cPd(OAc)2 (10 mol%).To advance our optimization of the reaction conditions, a variety of 2-pyridones and TDGs were tested (Scheme 2). Originally, pyridine-2(1H)-one (L2) was examined as the external ligand, but it only yielded the product (3a) in 7% NMR yield. Similarly, other mono- and di-substituted 2-pyridone ligands (L3–L10) also produced low yields, fixating L1 as the optimal external ligand. Next, various α- and β-amino acids (TDG1–10) were evaluated, yet TDG1 persisted as the optimal transient directing group. These amino acid screening results also suggest that a [5,6]-bicyclic palladium species is likely the key intermediate in this protocol since only β-amino acids were found to provide appreciable yields, whereas α-amino acids failed to yield more than trace amounts of the product. The supremacy of TDG1 when compared to other β-amino acids is presumably due to the Thorpe–Ingold effect that perhaps helps facilitate the C–H bond cleavage and stabilize the [5,6]-bicyclic intermediate further.Open in a separate windowScheme 2Optimization of 2-pyridone ligands and transient directing groups.With the optimized reaction conditions in hand, substrate scope study of primary aliphatic aldehydes was subsequently carried out (Scheme 3). A variety of linear primary aliphatic aldehydes bearing different chain lengths provided the corresponding products 3a–e in good yields. Notably, relatively sterically hindered methylene C–H bonds were also functionalized effectively (3f and 3g). Additionally, 4-phenylbutanal gave rise to the desired product 3h in a highly site-selective manner, suggesting that functionalization of the methylene β-C–H bond is predominantly favored over the more labile benzylic C–H bond. It is noteworthy that the amide group was also well-tolerated and the desired product 3j was isolated in 60% yield. As expected, with n-propanal as the substrate, β-mono- (3k1) and β,β-disubstituted products (3k2) were isolated in 22% and 21% yields respectively. However, in the absence of the key external 2-pyridone ligand, β-monosubstituted product (3k1) was obtained exclusively, albeit with a low yield, indicating preference for functionalizing the β-C(sp3)–H bond of the methyl group over the benzylic methylene group.Open in a separate windowScheme 3Scope of primary aliphatic aldehydes. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields. aL1 (60 mol%) was absent and yields are given in parentheses.Next, substrate scope study on aryl iodides was surveyed (Scheme 4). Iodobenzenes bearing either an electron-donating or electron-withdrawing group at the para-, meta-, or ortho-position were all found compatible with our catalytic system (3l–3ah). Surprisingly, ortho-methyl- and fluoro-substituted aryl iodides afforded the products in only trace amounts. However, aryl iodide with ortho-methoxy group provided the desired product 3ac in a moderate yield. Notably, a distinctive electronic effect pattern was not observed in the process. It should be mentioned that arylated products bearing halogen, ester, and cyano groups could be readily converted to other molecules, which significantly improves the synthetic applicability of the process. Delightfully, aryl iodide-containing natural products like ketoprofen, fenchol and menthol were proven compatible, supplying the corresponding products in moderate yields. Unfortunately, (hetero)aryl iodides including 2-iodopyridine, 3-iodopyridine, 4-iodopyridine and 4-iodo-2-chloropyridine failed to produce the corresponding products. Although our protocol provides a novel and direct pathway to construct β-arylated primary aliphatic aldehydes, the yields of most examples are modest. The leading reasons for this compromise are the following: (1) aliphatic aldehydes are easily decomposed or oxidized to acids; (2) some of the prepared β-arylated aldehyde products may be further transformed into the corresponding α,β-unsaturated aldehydes.Open in a separate windowScheme 4Scope of aryl iodides. Reaction conditions: 1a (0.2 mmol), 2 (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields.Density functional theory (DFT) calculations were performed to help investigate the reaction mechanism and to elucidate the role of the ligand in improving the reactivity (Fig. 2). The condensation of the aliphatic aldehyde 1a with the TDG to form imine-1a was found thermodynamically neutral (ΔG° = −0.1 kcal mol−1). As a result, it was permissible to use imine-1a directly in the calculations. According to the calculations results, the precatalyst [Pd(OAc)2]3, a trimeric complex, initially experiences dissociation and ligand metathesis with imine-1a to generate the Pd(ii) intermediate IM1, which is thermodynamically favorable by 21.9 kcal mol−1. Consequently, the deprotonated imine-1a couples to the bidentate ligand to form the stable six-membered chelate complex IM1. Therefore, IM1 is indeed the catalyst resting state and serves as the zero point to the energy profile. We have identified two competitive pathways for the Pd(ii)-catalyzed C–H activation starting from IM1, one of which incorporates L1 and another which does not. On the one hand, an acetate ligand substitutes one imine-1a chelator in IM1 to facilitate the subsequent C–H activation leading to IM2, which undergoes C(sp3)–H activation through concerted metalation-deprotonation (CMD) viaTS1 (ΔG = 37.4 kcal mol−1). However, this kinetic barrier is thought to be too high to account for the catalytic activity at 100 °C. On the other hand, the chelate imine-1a could be replaced by two N-coordinated ligands (L1) leading to the Pd(ii) complex IM3. This process is endergonic by 6.4 kcal mol−1. To allow the ensuing C–H activation, IM3 dissociates one ligand (L1) producing the active species IM4, which undergoes TS2 to cleave the β-C(sp3)–H bond and form the [5,6]-bicyclic Pd(ii) intermediate IM5. Although this step features an energy barrier of 31.2 kcal mol−1, it is thought to be feasible under the experimental conditions (100 °C). Possessing similar coordination ability to that of pyridine, the ligand (L1) effectively stabilizes the Pd(ii) center in the C–H activation process, indicating that this step most likely involves a manageable kinetic barrier. This result explicates the origin of the ligand-enabled reactivity (TS2vs.TS1). Additionally, we considered the γ-C(sp3)–H activation pathway viaTS2′ which was found to have a barrier of 35.5 kcal mol−1. The higher energy barrier of TS2′ compared to that of TS2 is attributed to its larger ring strain in the [6,6]-bicyclic Pd(ii) transition state, which reveals the motive for the site-selectivity. Reverting back to the supposed pathway, upon the formation of the bicyclic intermediate IM5, it undergoes ligand/substrate replacement to afford intermediate IM6, at which the Ar–I coordinates to the Pd(ii) center to enable oxidative addition viaTS3 (ΔG = 27.4 kcal mol−1) leading to the five-coordinate Pd(iv) complex IM7. Undergoing direct C–C reductive elimination in IM7 would entail a barrier of 29.6 kcal mol−1 (TS4). Alternatively, iodine abstraction by the silver(i) salt in IM7 is thermodynamically favorable and irreversible, yielding the Pd(iv) intermediate IM8 coordinated to a TFA ligand. Subsequently, C–C reductive coupling viaTS5 generates the Pd(ii) complex IM9 and concludes the arylation process. This step was found both kinetically facile (6.1 kcal mol−1) and thermodynamically favorable (30.7 kcal mol−1). Finally, IM9 reacts with imine-1avia metathesis to regenerate the palladium catalyst IM1 and release imine-3a in a highly exergonic step (21.0 kcal mol−1). Ultimately, imine-3a undergoes hydrolysis to yield the aldehyde product 3a and to release the TDG.Open in a separate windowFig. 2Free energy profiles for the ligand-promoted Pd(ii)-catalyzed site-selective C–H activation and C–C bond formation, alongside the optimized structures of the C–H activation transition states TS1 and TS2 (selected bond distances are labelled in Å). Energies are relative to the complex IM1 and are mass-balanced.  相似文献   

7.
Developing highly efficient catalytic protocols for C–sp(3)–H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C–sp(3)–H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL–NHPI system exhibited excellent performance in the oxidation of C–sp(3)–H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL–NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C–sp(3)–H bond was demonstrated.

A biomimetic catalytic approach for the aerobic oxidation of C–sp(3)–H bonds using galactose oxidase model compound was developed. EPR showed that the CuI-radical intermediate species was critical for O2 activation.  相似文献   

8.
The synthesis of new Schrock–Osborn Rh(i) pre-catalysts with ortho-substituted DPEphos ligands, [Rh(DPEphos-R)(NBD)][BArF4] [R = Me, OMe, iPr; ArF = 3,5-(CF3)2C6H3], is described. Along with the previously reported R = H variant, variable temperature 1H NMR spectroscopic and single-crystal X-ray diffraction studies show that these all have axial (C–H)⋯Rh anagostic interactions relative to the d8 pseudo square planar metal centres, that also result in corresponding downfield chemical shifts. Analysis by NBO, QTAIM and NCI methods shows these to be only very weak C–H⋯Rh bonding interactions, the magnitudes of which do not correlate with the observed chemical shifts. Instead, as informed by Scherer''s approach, it is the topological positioning of the C–H bond with regard to the metal centre that is important. For [Rh(DPEphos–iPr)(NBD)][BArF4] addition of H2 results in a Rh(iii) iPr–C–H activated product, [Rh(κ3,σ-P,O,P-DPEphos-iPr′)(H)][BArF4]. This undergoes H/D exchange with D2 at the iPr groups, reacts with CO or NBD to return Rh(i) products, and reaction with H3B·NMe3/tert-butylethene results in a dehydrogenative borylation to form a complex that shows both a non-classical B–H⋯Rh 3c-2e agostic bond and a C–H⋯Rh anagostic interaction at the same metal centre.

Rh(i) complexes of ortho-substituted DPEphos-R (R = H, Me, OMe, iPr) ligands show anagostic interactions; for R =iPr C–H activation/dehydrogenative borylation forms a product exhibiting both B–H/Rh 3c-2e agostic and C–H/Rh anagostic motifs.  相似文献   

9.
A selective, sequential C–O decarboxylative vinylation/C–H arylation of cyclic alcohol derivatives enabled by visible-light photoredox/nickel dual catalysis is described. This protocol utilizes a multicomponent radical cascade process, i.e. decarboxylative vinylation/1,5-HAT/aryl cross-coupling, to achieve efficient, site-selective dual-functionalization of saturated cyclic hydrocarbons in one single operation. This synergistic protocol provides straightforward access to sp3-enriched scaffolds and an alternative retrosynthetic disconnection to diversely functionalized saturated ring systems from the simple starting materials.

A selective, sequential C–O decarboxylative vinylation/C–H arylation of cyclic alcohol derivatives enabled by visible-light photoredox/nickel dual catalysis has been described.  相似文献   

10.
Thioethers allowed for highly atroposelective C–H olefinations by a palladium/chiral phosphoric acid catalytic system under ambient air. Both N–C and C–C axial chiral (hetero)biaryls were successfully constructed, leading to a broad range of axially chiral N-aryl indoles and biaryls with excellent enantioselectivities up to 99% ee. Experimental and computational studies were conducted to unravel the walking mode for the atroposelective C–H olefination. A plausible chiral induction model for the enantioselectivity-determining step was established by detailed DFT calculations.

Thioethers allowed for highly atroposelective C–H olefinations by a palladium/chiral phosphoric acid catalytic system under ambient air.  相似文献   

11.
A nontrigonal phosphorus triamide (1, P{N[o-NMe-C6H4]2}) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P-hydrido diazaphospholene 2, which is diverted by Atherton–Todd oxidation with chloroalkane to generate P-chloro diazaphospholene 3. DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation.

A nontrigonal phosphorus triamide (1, P{N[o-NMe-C6H4]2}) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent.  相似文献   

12.
Convergent paired electrosynthesis is an energy-efficient approach in organic synthesis; however, it is limited by the difficulty to match the innate redox properties of reaction partners. Here we use nickel catalysis to cross-couple the two intermediates generated at the two opposite electrodes of an electrochemical cell, achieving direct arylation of benzylic C–H bonds. This method yields a diverse set of diarylmethanes, which are important structural motifs in medicinal and materials chemistry. Preliminary mechanistic study suggests oxidation of a benzylic C–H bond, Ni-catalyzed C–C coupling, and reduction of a Ni intermediate as key elements of the catalytic cycle.

A direct arylation of benzylic C–H bonds is achieved by integrating Ni-catalyzed benzyl–aryl coupling into convergent paired electrolysis.

Electrochemical organic synthesis has drawn much attention in recent years.1 Compared to processes using stoichiometric redox agents, electrosynthesis can potentially be more selective and safe, generate less waste, and operate under milder conditions.1b In the majority of examples, the reaction of interest occurs at one electrode (anode for oxidation or cathode for reduction), while a sacrificial reaction occurs at the counter electrode to fulfil electron neutrality.1a,2 Paired electrolysis uses both anodic and cathodic reactions for the target synthesis, thereby maximizing energy efficiency.1a,3 However, there are comparatively few examples of paired electrolysis for organic synthesis.1a,3,4Paired electrolysis might be classified into three types: parallel, sequential, and convergent (Fig. 1).1a,3a In parallel paired electrolysis (Fig. 1a), the two half reactions are simultaneous but non-interfering. In sequential paired electrolysis (Fig. 1b), a substrate is oxidized and reduced (or vice versa) sequentially. In convergent paired electrolysis (Fig. 1c), intermediates generated by the anodic and cathodic processes react with one another to yield the product.1a,3a,4b,c,5 The activation mode of all three types of paired electrolysis is based on the innate redox reactivity of substrates. As a result, the types of reactions that could be conducted by paired electrolysis remain limited. We proposed a catalytic version of convergent paired electrolysis, where a catalyst is used to cross-couple the two intermediates generated at the two separated electrodes (Fig. 1d). Although mediators have been used in paired electrosynthesis,3a,4c,6 catalytic coupling of anodic and cathodic intermediates remains largely undeveloped. This mode of action will leverage the power of cross-coupling to electrosynthesis, opening up a wide substrate and product space. Here we report the development of such a process, where cooperative nickel catalysis and paired electrolysis enable direct arylation of benzylic C–H bonds (Fig. 1e).Open in a separate windowFig. 1Different types of paired electrolysis: (a) parallel paired electrolysis, (b) sequential paired electrolysis, (c) convergent paired electrolysis, (d) catalytic convergent paired electrolysis and (e) this work.Our method can be used to synthesize diarylmethanes, which are important structural motifs in bioactive compounds,7 natural products8 and materials.9 Direct arylation of benzylic C–H bonds has been recognized as an efficient strategy to synthesize diarylmethanes, and methods using metal catalysis10 and in particular combined photoredox and transition-metal catalysis have been reported.11 Electrosynthesis provides a complementary approach to these methods, with the potential advantages outlined above. The groups of Yoshida12 and Waldvogel13 previously developed synthesis of diarylmethanes via a Friedel–Crafts-type reaction of a benzylic cation and a nucleophile. The benzylic cations were generated by anodic oxidation of benzylic C–H bonds.14 To avoid the overoxidation of products and to stabilize the very reactive benzylic cations, the reactions had to be conducted in two steps, where the benzylic cations generated in the anodic oxidation step had to be trapped by a reagent. We thought a Ni catalyst could be used to trap the benzyl radical to form an organonickel intermediate, which is then prone to a Ni-catalyzed C–C cross-coupling reaction. Although such a coupling scheme was unprecedented, Ni-catalyzed electrochemical reductive coupling of aryl halides was well established.15 We were also encouraged by a few recent reports of combined Ni catalysis and electrosynthesis for C–N,16 C–S,17 and C–P18 coupling reactions.We started our investigations using the reaction between 4-methylanisole 1a and 4-bromoacetophenone 2a as a test reaction (Table 1). Direct arylation of benzylic C–H bonds was challenging and was typically conducted using toluene derivatives in large excess, e.g., as a solvent.11a,b,11df To improve the reaction efficiency, we decided to use only 3 equivalents of 4-methylanisole 1a relative to 2a. After some initial trials, we decided to conduct the reaction in an undivided cell using a constant current of 3 mA. These conditions are straightforward from a practical point of view. After screening various reaction parameters, we found that a combination of 4,4′-dimethoxy-2-2′-bipyridine (L1) and (DME)NiBr2 as a catalyst, THF/CH3CN (4 : 1) as a solvent, fluorine-doped tin oxide (FTO) coated glass as an anode and carbon fibre as a cathode gave a 50% GC yield of 1-(4-(4-methoxybenzyl)phenyl)ethanone 3a after 18 h (Table 1, entry 1). Extending the reaction time to 36 h improved the yield to 76% (isolated yield) (entry 2). The target products were formed in a diminished yield with other bipyridine type ligands (entries 3–5). Solvents commonly used in Ni-catalyzed cross-coupling reactions, such as DMA and DMF, were less effective (entries 7–8). Replacing carbon fibre by nickel foam or platinum foil as the cathode was detrimental to the coupling, but substantial yields were still obtained (entries 9–10). On the other hand, FTO could not be replaced as the anode. Using carbon fibre as the anode shut down the reaction (entry 11). Likewise, using Pt foil as the anode gave only a 7% GC yield (entry 12). The sensitivity of the reaction outcomes to the electrodes originates from the electrode-dependent redox properties of reaction components (see below). Additional data showing the influence of other reaction parameters such as nickel sources, current, concentration, and electrolytes are provided in the ESI (Table S1, ESI).Summary of the influence of key reaction parametersa
EntryLigandAnodeCathodeSolventYield (%)
1 L1 FTOCarbon fibreTHF/CH3CN = 4 : 156
2 L1 FTOCarbon fibreTHF/CH3CN = 4 : 176b
3 L2 FTOCarbon fibreTHF/CH3CN = 4 : 143
4 L3 FTOCarbon fibreTHF/CH3CN = 4 : 146
5 L4 FTOCarbon fibreTHF/CH3CN = 4 : 121
6 L1 FTOCarbon fibreCH3CN4
7 L1 FTOCarbon fibreDMA15
8 L1 FTOCarbon fibreDMF6
9 L1 FTONi foamTHF/CH3CN = 4 : 145
10 L1 FTOPt foilTHF/CH3CN = 4 : 128
11 L1 Carbon fibre (1 cm2)Carbon fibreTHF/CH3CN = 4 : 10
12 L1 Pt foil (cm2)Carbon fibreTHF/CH3CN = 4 : 17
Open in a separate windowaReaction conditions: 1a (0.6 mmol), 2a (0.2 mmol), (DME)NiBr2 (6 mol%), ligand (7.2 mol mol%), LutHClO4 (0.1 M), and lutidine (0.8 mmol) in solvent (2 mL) at 40 °C. GC yield.bReaction time: 36 h. Isolated yield.With the optimized reaction conditions in hand, we explored the substrate scope (Table 2). A large number of aryl and heteroaryl bromides could be coupled (3a–3x). These substrates may contain electron-rich, neutral, or poor groups. For aryl bromide bearing electron-donating groups, replacing (DME)NiBr2 by Ni(acac)2 gave higher yields (3k–3o). The method tolerates numerous functional groups in the (hetero)aryl bromides, including for example ketone (3a), nitrile (3b, 3u, and 3v), ester (3c, 3m, 3n, and 3s), amide (3d), aryl-Cl (3q), CF3(3i, 3t, and 3w), OCF3(3e), aryl-F(3x), pyridine (3w and 3x), and arylboronic ester (3g). We then probed the scope of benzylic substrates using 4-bromoacetophenone 2a as the coupling partner (3aa–3ai). Toluene and electron-rich toluene derivatives were readily arylated (3aa–3ac). Toluene derivatives containing an electron-withdrawing group such as fluoride (3ad) and chloride (3ae) could also be arylated, although a higher excess of them (10 equiv.) was necessary. More elaborated toluene derivatives containing an additional ester (3af, 3ai) or ether (3ag, 3ah, and 3ai) were also viable.Substrate scopea
Open in a separate windowaReaction conditions: 1 (0.6 mmol), 2 (0.2 mmol), (DME)NiBr2 (6 mol%), L1 (7.2 mol mol%), LutHClO4 (0.1 M), and lutidine (0.8 mmol) in THF/CH3CN (4 : 1, 2 mL) at 40 °C. Isolated yield.b(DME)NiBr2 (5 mol%) and L1 (6 mol%) were used as the catalysts.cNi(acac)2 was used instead of (DME)NiBr2.dSolvent: THF/CH3CN (3 : 1, 2 mL).e2 mmol toluene or its derivative was used as the substrate.fReaction time: 60 h.Linear sweep voltammetry (LSV) was applied to probe the possible processes at both the anode and cathode. The measurements were made in THF/CN3CN (4 : 1, 2 mL) using [LutH]ClO4 (0.1 M) as the electrolyte and lutidine (0.4 M) as an additional base to mimic the coupling conditions. The LSV curves of individual reaction components indicate that only 4-methylanisole 1a and the Ni catalyst may be oxidized at the anode (Fig. 2a). The current at 3 mA appears to be the sum of the oxidation currents of 1a and the Ni catalyst. Meanwhile, LSV curves indicate that only the Ni catalyst might be reduced at the cathode (Fig. 2b).Open in a separate windowFig. 2The LSV curves of different reaction components at the anode or cathode. The components were dissolved in THF/CN3CN (4 : 1, 2 mL); the solution also contained [LutH]ClO4 (0.1 M) and lutidine (0.4 M). Scan rate: 50 mV s−1. (a) The LSV curves of different reaction components at the FTO anode; (b) the LSV curves of different reaction components at the carbon fibre cathode; (c) the LSV curves of different reaction components at the carbon fibre anode.It was observed that FTO was an essential anode for the reactions. If FTO was replaced by a carbon fibre anode, no coupling product was obtained. LSV was performed to probe the oxidation of 1a and the Ni catalyst on a carbon fibre anode (Fig. 2c). The oxidation of the Ni catalyst was much easier on carbon fibre than on FTO. At 3 mA, the oxidation is exclusively due to the Ni catalyst. This result suggests that the absence of coupling on the carbon fibre anode is due to no oxidation of 1a. The different redox properties of 1a and the Ni catalyst observed on different electrodes might be attributed to the different nature of surface species which influence the electron transfer. Although FTO is rarely used in electrosynthesis, it is widely used in electrocatalysis and photoelectrocatalysis for energy conversion.19 FTO is stable, commercially available and inexpensive. In our reactions, the FTO anode could be reused at least three times.The LSV curves in Fig. 2 revealed the issue of “short-circuit” of catalyzed/mediated paired electrolysis in an undivided cell, as the catalyst or mediator can be reduced and oxidized at both the cathode and anode. When carbon fibre or graphite was used as the anode, the short-circuit problem was very severe so that nearly no current was used for electrosynthesis. However, by using an appropriate anode such as FTO, the short-circuit problem was alleviated and around half of the current was used to oxidize the substrate (1a) while the other half was used to oxidize the nickel complex. The remaining short-circuit is one of the reasons why the current efficiencies of the reactions are low (<10%). Another factor contributing to the low current efficiency is the instability of the benzyl radical, which can abstract hydrogen from the solvent to regenerate the substrate. Nevertheless, useful products could be obtained in synthetically useful yields under conditions advantageous to previous methods.For the test reaction (Table 1), a small amount of homo-coupling product bis(4-methoxyphenyl)methane (<2%) was detected by GC-MS under the optimized conditions. In the absence of ligand L1, the yield of the homo-coupling products increased (∼8%). In the presence of a radical acceptor, the electron-withdrawing alkene vinyl benzoate, the product originating from the addition of a benzyl radical to the olefin was obtained in about 12% GC yield (ESI, Scheme S1). These data support the formation of a benzyl radical intermediate. As bromide existed in our reaction system, it is possible to be oxidized to form a bromine radical. Previous studies showed that a bromine radical can react with a toluene derivative to give a benzyl radical.11b,g,20 To probe the involvement of the Br radical, we conducted a coupling of 4-methylanisole 1a with 4′-Iodoacetophenone, using Ni(acac)2 instead of (DME)NiBr2 as the Ni source. We obtained a GC yield of 24% for the coupling after 18 h (Scheme S2). This result suggests that a Br-free path exists for the coupling, although a non-decisive involvement of Br/Br˙ cannot be ruled out.Based on the data described above, we propose a mechanism for the coupling (Scheme 1). The oxidation of a toluene derivative at the anode gives a benzyl radical. This radical is trapped by a LNi(ii)(Ar)(Br) species (B) in the solution to give a LNi(iii)(Ar)(benzyl)(Br) intermediate (C). The latter undergoes reductive elimination to give a diarylmethane and a LNi(i)(Br) species (A). There are at least two ways A can be convert to B to complete the catalytic cycle: either by oxidative addition of ArBr followed by a 1-e reduction at the cathode or by first 1-e reduction to form a Ni(0) species followed by oxidation addition of ArBr. In addition to a toluene derivative, a Ni species is oxidized at the anode. We propose that this oxidation is an off cycle event, which reduces the faradaic and catalytic efficiency but does not shut down the productive coupling.Open in a separate windowScheme 1Proposed mechanism of the direct arylation of benzylic C–H bonds.  相似文献   

13.
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section.

C(sp3) radicals (R˙) are of broad research interest and synthetic utility.  相似文献   

14.
In situ cryocrystallization has been employed to grow single crystals of 4‐methoxybenzaldehyde (anisaldehyde), C8H8O2, 2‐hydroxybenzaldehyde (salicylaldehyde), C7H6O2, and (2E)‐3‐phenylprop‐2‐enal (cinnamaldehyde), C9H8O, all of which are liquids at room temperature. Several weak C—H...O interactions of the types Caryl—H...O, Cformyl—H...O and Csp3—H...O are present in these related crystal structures.  相似文献   

15.
Deuterium labelled compounds are of significant importance in chemical mechanism investigations, mass spectrometric studies, diagnoses of drug metabolisms, and pharmaceutical discovery. Herein, we report an efficient hydrogen deuterium exchange reaction using deuterium oxide (D2O) as the deuterium source, enabled by merging a tetra-n-butylammonium decatungstate (TBADT) hydrogen atom transfer photocatalyst and a thiol catalyst under light irradiation at 390 nm. This deuteration protocol is effective with formyl C–H bonds and a wide range of hydridic C(sp3)–H bonds (e.g. α-oxy, α-thioxy, α-amino, benzylic, and unactivated tertiary C(sp3)–H bonds). It has been successfully applied to the high incorporation of deuterium in 38 feedstock chemicals, 15 pharmaceutical compounds, and 6 drug precursors. Sequential deuteration between formyl C–H bonds of aldehydes and other activated hydridic C(sp3)–H bonds can be achieved in a selective manner.

A selective hydrogen deuterium exchange reaction with formyl C–H bonds and a wide range of hydridic C(sp3)–H bonds has been achieved by merging tetra-n-butylammonium decatungstate photocatalyst and a thiol catalyst under 390 nm light irradiation.  相似文献   

16.
A palladium-catalyzed C–H activation of acetylated anilines (acetanilides, 1,1-dimethyl-3-phenylurea, 1-phenylpyrrolidin-2-one, and 1-(indolin-1-yl)ethan-1-one) with epoxides using O-coordinating directing groups was accomplished. This C–H alkylation reaction proceeds via formation of a previously unknown 6,4-palladacycle intermediate and provides rapid access to regioselectively functionalized β-hydroxy products. Notably, this catalytic system is applicable for the gram scale mono-functionalization of acetanilide in good yields. The palladium-catalyzed coupling reaction of the ortho-C(sp2) atom of O-coordinating directing groups with a C(sp3) carbon of chiral epoxides offers diverse substrate scope in good to excellent yields. In addition, further transformations of the synthesized compound led to biologically important heterocycles. Density functional theory reveals that the 6,4-palladacycle leveraged in this work is significantly more strained (>10 kcal mol−1) than the literature known 5,4 palladacycles.

The combined experimental and computational study on palladium-catalyzed regioselective C–H functionalization of O-coordinating directing groups with epoxides is described.  相似文献   

17.
We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm). Experiments indicate that the reaction operates via direct single-electron oxidation of the arene substrate ArOCHRR′ to its radical cation by the excited state organic photocatalyst; this is followed by deprotonation of the ArOC–H in the radical cation to yield the radical ArOC˙RR′. This radical then attacks the electrophile to form an intermediate alkyl radical that is reduced to complete the photocatalytic cycle. The oxidation step is selective for activated arenes (ArOR) over their non-activated counterparts and the subsequent deprotonation of the methoxy group affords the α-aryloxyalkyl radical that leads to a wide range of functionalised products in good to excellent yield.

We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm).  相似文献   

18.
《Chemical physics》1987,113(2):223-230
Hyperspherical H2O* resonances excited to energies ≲1 eV above the electronic ground state H2O* → H + OH dissociation threshold have lifetimes ≈ 45 ps, at least ten times longer than near-degenerate local H2O* resonances. The results are evaluated and analysed using fast-Fourier-transform (FFT) propagation of quantum wavefunctions representing H2O stretching vibrations modeled by coupled Morse oscillators.  相似文献   

19.
With an ever-growing emphasis on sustainable synthesis, aerobic C–H activation (the use of oxygen in air to activate C–H bonds) represents a highly attractive conduit for the development of novel synthetic methodologies. Herein, we report the air mediated functionalisation of various saturated heterocycles and ethers via aerobically generated radical intermediates to form new C–C bonds using acetylenic and vinyl triflones as radical acceptors. This enables access to a variety of acetylenic and vinyl substituted saturated heterocycles that are rich in synthetic value. Mechanistic studies and control reactions support an aerobic radical-based C–H activation mechanism.

Herein we disclose a novel method for the aerobic C–H activation of ethereal-based heterocycles to generate various α-functionalised building blocks.  相似文献   

20.
A ruthenium-catalyzed ortho C–H arylation process is described using visible light. Using the readily available catalyst [RuCl2(p-cymene)]2, visible light irradiation was found to enable arylation of 2-aryl-pyridines at room temperature for a range of aryl bromides and iodides.

A ruthenium-catalyzed ortho C–H arylation process is described using visible light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号