首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
In this study we compare the binding energies of polycoordinated complexes of Zn2+ within cavities composed of model “hard” (H2O, OH) or “soft” (CH3SH, CH3S) ligands. Ab initio supermolecule computations are performed at the HF and MP2 levels using extended basis sets to determine the binding energies and their components as a function of: the number of ligands, ranging from three to six; the net charge of the cavity; and the “hard” versus “soft” character of the ligands. These ab initio computations are used to test the reliability of the SIBFA molecular mechanics procedure, originally formulated and calibrated on the basis of ab initio computations, for such charged systems. The SIBFA intermolecular interaction energies match the corresponding ab initio values using a coreless effective potential split‐valence basis set with a relative error of ≤3%. Extensions to binuclear Zn2+ complexes, such as those that occur in the Zn‐binding sites of Gal4 and β‐lactamase proteins, are performed to test the applicability of the methodology for such systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1011–1039, 2000  相似文献   

2.
We present refinements of the SIBFA molecular mechanics procedure to represent the intermolecular interaction energies of Zn(II). The two first-order contributions, electrostatic (E(MTP)), and short-range repulsion (E(rep)), are refined following the recent developments due to Piquemal et al. (Piquemal et al. J Phys Chem A 2003, 107, 9800; and Piquemal et al., submitted). Thus, E(MTP) is augmented with a penetration component, E(pen), which accounts for the effects of reduction in electronic density of a given molecular fragment sensed by another interacting fragment upon mutual overlap. E(pen) is fit in a limited number of selected Zn(II)-mono-ligated complexes so that the sum of E(MTP) and E(pen) reproduces the Coulomb contribution E(c) from an ab initio Hartree-Fock energy decomposition procedure. Denoting by S, the overlap matrix between localized orbitals on the interacting monomers, and by R, the distance between their centroids, E(rep) is expressed by a S(2)/R term now augmented with an S(2)/R(2) one. It is calibrated in selected monoligated Zn(II) complexes to fit the corresponding exchange repulsion E(exch) from ab initio energy decomposition, and no longer as previously the difference between (E(c) + E(exch)) and E(MTP). Along with the reformulation of the first-order contributions, a limited recalibration of the second-order contributions was carried out. As in our original formulation (Gresh, J Comput Chem 1995, 16, 856), the Zn(II) parameters for each energy contribution were calibrated to reproduce the radial behavior of its ab initio HF counterpart in monoligated complexes with N, O, and S ligands. The SIBFA procedure was subsequently validated by comparisons with parallel ab initio computations on several Zn(II) polyligated complexes, including binuclear Zn(II) complexes as in models for the Gal4 and beta-lactamase metalloproteins. The largest relative error with respect to the RVS computations is 3%, and the ordering in relative energies of competing structures reproduced even though the absolute numerical values of the ab initio interaction energies can be as large as 1220 kcal/mol. A term-to-term identification of the SIBFA contributions to their ab initio counterparts remained possible even for the largest sized complexes.  相似文献   

3.
α‐ and β‐mercaptocarboxamides constitute the Zn2+‐ligating entity of several highly potent metalloenzyme inhibitors. We have studied their interaction energies with Zn2+ using the polarizable molecular mechanics procedure SIBFA, and compared them to the corresponding ab initio supermolecule ones. Such validations are necessary to subsequently undertake simulations on complexes of Zn2+–metalloenzymes with inhibitors. If the distributed multipoles and polarizabilities are those derived for each ligand in its appropriate Zn2+‐binding conformation, a close reproduction of the ab initio binding energies is afforded. However, this representation is not tractable upon increasing the size of the ligands and/or to explore a continuum of binding conformations. This makes it necessary to construct the ligands by resorting to a library of constitutive fragments, namely in this case methanethiolate, formamide, and methane covalently connected together. A close reproduction of the ab initio interaction energies is enabled, but only if the ligand–ligand interactions are computed simultaneously with those occurring with Zn2+. This representation accounts for the nonadditivity occurring in the Zn2+–methanethiolate–formamide complex, and justifies the use of the distributed multipoles on the fragments for the construction of larger and flexible molecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1038–1047, 2001  相似文献   

4.
An extension of the SIBFA polarizable molecular mechanics procedure to flexible oligopeptides is reported. The procedure is evaluated by computing the relative conformational energies, deltaE(conf), of the alanine tetrapeptide in 10 representative conformations, which were originally derived by Beachy et al. (J Am Chem Soc 1997, 119, 5908) to benchmark molecular mechanics procedures with respect to ab initio computations. In the present study, a particular emphasis is on the separable nature of the components of the energy and the particular impact of the polarization energy component on deltaE(conf). We perform comparisons with respect to single-point HF, DFT, LMP2, and MP2 computations done at the SIBFA-derived energy minima. Such comparisons are made first for the 10 conformers derived from phi/psi torsional angle energy-minimization (the rigid rotor approach), and, in a second step, after allowing additional relaxation of the C(alpha) centered valence angles. In both series of energy-minimization, the SIBFA deltaE(conf) compared best with the LMP2 results using the 6-311G** basis set, the rms being 1.3 kcal/mol. In the absence of the polarization component, the rms is 3.5 kcal/mol. In both series of minimizations, the magnitudes of deltaE(conf), computed as differences with respect to the most stable conformer taken as energy zero, decrease along the series: HF > DFT > LMP2 > SIBFA > MP2, indicative of increasing stabilization of the most highly folded conformers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号