首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当大涡模拟用于研究化学反应流动时,传统的滤波方法会导致化学反应项不封闭. 为克服这 个困难,发展了条件滤波大涡模拟方法. 在选择适当的条件变量后,条件滤波的化学反 应项可以表达为一个封闭项. 但同时也带来了新的问题:条件滤波耗散或条件滤波扩散项的 不封闭. 为解决这一问题,采用了直接数值模拟方法研究了它们在大小尺度上的统计特 性. 研究结果表明:条件滤波耗散和扩散对于大尺度的依赖主要体现在大尺度标量场中扩散 层结构的影响,同时小尺度脉动的变化几乎与条件滤波扩散无关,而它对条件滤波耗散却显 现出明显的作用. 在构造条件滤波耗散的亚格子模型时,小尺度脉动的作用不容忽视.  相似文献   

2.
Influence of finite difference schemes and subgrid‐stress models on the large eddy simulation calculation of turbulent flow around a bluff body of square cylinder at a laboratory Reynolds number, has been examined. It is found that the type and the order of accuracy of finite‐difference schemes and the subgrid‐stress model for satisfactory results are dependent on each other, and the grid resolution and the Reynolds number. Using computational grids manageable by workstation‐level computers, with which the near‐wall region of the separating boundary layer cannot be resolved, central‐difference schemes of realistic orders of accuracy, either fully conservative or non‐conservative, suffer stability problems. The upwind‐biased schemes of third order and the Smagorinsky eddy‐viscosity subgrid model can give reasonable results resolving much of the energy‐containing turbulent eddies in the boundary layers and in the wake and representing the subgrid stresses in most parts of the flow. Noticeable improvements can be obtained by either using higher order difference schemes, increasing the grid resolution and/or by implementing a dynamic subgrid stress model, but each at a cost of increased computational time. For further improvements, the very small‐scale eddies near the upstream corners and in the laminar sublayers need to be resolved but would require a substantially larger number of grid points that are out of the range of easily accessible computers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This paper summarizes several results relative to discrete filters for subgrid‐scale (SGS) models based on a multi‐level filtering procedure. First, a theoretical study of discrete filters in physical space is performed. The analysis is done in the uniform one‐dimensional case, and is then extended to the general multi‐dimensional case for arbitrary structured and unstructured meshes. Some equivalence classes for the discrete filters are defined, based either on a differential approximation or the associated transfer function. Methods for the definition of discrete filters are proposed in the general case, including the approximation of continuous convolution filters. Second, the sensitivity of several SGS models with respect to the test filter is investigated. The selected models are: the dynamic Smagorinsky model, the mixed scale model (MSM), the selective MSM and the Liu–Meneveau–Katz (LMK) similarity model. Improved versions, which explicitly account for the spectral width of the test filter of the MSM and the LMK similarity model are proposed. The analysis, which reveals a significant influence of the test filter, is done through a priori testing on a 1283 field issued from the large eddy simulation (LES) of freely decaying homogeneous isotropic turbulence. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The numerical simulation of turbulence is one of the most challenging tasks in the field of the modern computational science. At present, the most advanced approach is the large eddy simulation (LES) technique wherein a formal separation between resolved (large) and unresolved (small) scales of the motion is in effect by means of a filtering operation applied onto the governing equations. However, LES requires very sophisticated numerical discretizations in terms of both accuracy and efficiency. Often, the modelling of the unresolved subgrid scale terms adds further computational complexities. This paper illustrates the suitability in using software packages for symbolic computation (in the present case, Maple© for helping in the production of subroutines for a new multidimensional, high‐order accurate finite volume‐based LES code. Specifically, it will be detailed how producing, rapidly and efficiently, the routines for computing convective, diffusive as well as subgrid scale modelling fluxes. It is particularly detailed how exploiting the package for differential calculus and linear algebra for the analytical integration of the flux polynomials over the finite volume faces. The structure of the LES code is illustrated, and an accuracy analysis of the local truncation errors is performed comparing the third‐order accurate multidimensional upwind and the classical second‐order centred reconstruction in the wavenumbers space. Then, some numerical results for the turbulent plane channel and some brief points concerning the parallelization issue are addressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
As a type of shock-capturing scheme, the traditional Roe scheme fails in large eddy simulation (LES) because it cannot reproduce important turbulent characteristics, such as the famous k?5/3 spectral law, as a consequence of the large numerical dissipation. In this work, the Roe scheme is divided into five parts, namely, ξ, δUp, δpp, δUu, and δpu, which denote basic upwind dissipation, pressure difference-driven modification of interface fluxes, pressure difference-driven modification of pressure, velocity difference-driven modification of interface fluxes, and velocity difference-driven modification of pressure, respectively. Then, the role of each part in the LES of homogeneous decaying turbulence with a low Mach number is investigated. Results show that the parts δUu, δpp, and δUp have little effect on LES. Such minimal effect is integral to computational stability, especially for δUp. The large numerical dissipation is due to ξ and δpu, each of which features a larger dissipation than the sub-grid scale model. On the basis of these conditions, an improved all-speed Roe scheme for LES is proposed. This scheme can provide satisfactory LES results even for coarse grid resolutions with usually adopted second-order reconstructions for the finite volume method.  相似文献   

6.
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.  相似文献   

7.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Large eddy simulation (LES) results are reported for temporally developing solid–solid and solid–rigid-lid juncture flows. A MacCormack-type scheme that is second-order in time, and fourth-order in space for the convective terms and second-order in space for the viscous terms, is used. The simulations are obtained for a low subsonic Mach number. The subgrid-scale stresses (SGS) are modeled using the dynamic modeling procedure. The turbulent flow field generated on a flat-plate boundary layer is used to initialize the juncture flow simulations. The results of the flat-plate boundary layer simulations are validated with experimental and direct numerical simulations (DNS) data. In juncture flow simulations, the presence of an adjacent solid-wall/rigid-lid boundary altered the mean and the turbulent field, setting up gradients in the anisotropy of normal Reynolds stresses resulting in the formation of turbulence-induced secondary vortices. The relative size of these secondary vortices and the distribution of mean and turbulent quantities are in qualitative agreement with the experimental observations for the solid–solid juncture. The overall distribution of the mean and turbulence quantities showed close resemblance between the solid–solid and the solid–rigid-lid junctures; except for the absence of a second vortical region near the rigid-lid boundary. In agreement with the experimental observations, it was found that the normalized anisotropy term exhibited similarity when plotted against the distance from the boundary, regardless of the type of boundary, i.e. solid-wall or rigid-lid. The turbulent kinetic energy increased near the rigid-lid boundary. While the surface normal velocity fluctuations decreased to zero at the rigid-lid boundary, the other two velocity components showed an increase in their energy, which is also consistent with the experimental observations. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
城市大气环境的大涡模拟研究进展   总被引:5,自引:0,他引:5  
本文回顾城市大气污染扩散的研究实践与进展, 介绍城市大气环境流动的特点和用现代计算流体力学手段开展城市大气环境的大涡模拟研究方法, 包括: 数学模型, 控制方程、亚网格湍流模式、定解条件及其数值方法. 其中, 重点介绍中尺度到微尺度的耦合模型与适用于复杂城市下垫面(满足大涡模拟分辨率要求且计算量较小)的组合模型;并给出实际算例和结果分析, 包括准确度的统计估算和湍流特性等. 最后, 讨论城市大气环境数值模拟方法进一步改进的方向和城市大气环境流动与污染物扩散数值研究应重点关注的几个问题.  相似文献   

10.
The performance of implicit large eddy simulation (ILES) of a supersonic flat-plate turbulent boundary layer flow by weighted compact nonlinear scheme (WCNS) has been investigated. In view of features of WCNS and ILES, it was expected that ILES by WCNS could be an efficient approach to perform LES of supersonic turbulent flows. The flowfield calculated by WCNS was of lower turbulent intensity compared with an explicit LES data obtained by a numerical scheme of the same order of accuracy on a computational grid of similar resolution. It was concluded that the numerical dissipation inherent in WCNS is so large that applying WCNS to ILES of this flowfield is inefficient compared with explicit LES.  相似文献   

11.
基于近壁定常剪切应力假设,提出了一种新的适用于浸入边界法的大涡模拟紊流壁面模型。通过引入壁面滑移速度,修正了线性速度剖面计算得到的壁面剪切应力,使之满足Werner-Wengle模型。将其应用于平板紊流和高Re数圆管紊流的数值模拟,对比采用和不采用壁面模型的结果得知,采用此模型的速度剖面与实验值吻合良好,验证了此模型的有效性。研究了不同欧拉/拉格朗日网格相对位置对结果的影响,证明了此模型具有较好的鲁棒性,以及可根据局部流动状态和网格精度自动开闭的特点。  相似文献   

12.
Turbulent flows in channels with intense distributed injection are modeled using the large eddy method and the two-equation k-? turbulence model. The calculations are carried out for different velocities of injection from the channel walls. For a channel with one-sided injection the results of large eddy simulation are in good agreement with the measured data, whereas the calculations in accordance with the k-? model give a less convex cross-sectional velocity profile and an appreciable error in determining the surface friction coefficient on the impermeable wall and also have certain other shortcomings. In the case of two-sided injection, the results of the calculations by the large eddy method and the k-? model are in good agreement with one another and the data of physical experiments.  相似文献   

13.
In this paper large eddy simulation of the fully developed turbulent flow in a curved channel is carried out. The computational results are presented and compared with the experimental results of Eskinazi and Yeh[1]. It is shown that the numerical results of the present LES are reliable and the influence of the curvature on the turbulence feature is correctly revealed.  相似文献   

14.
防风网透流风空气动力学特性大涡数值模拟研究   总被引:2,自引:2,他引:0  
基于有限体积法建立不可压缩粘性流体运动的大涡模拟模型,采用Smagorinsky-Lilly亚格子模型,并引入浸入边界法(IBM)实现无滑移固壁边界条件,对雷诺数30~30000之间防风网透流风进行模拟研究。基于模拟结果,提出蝶型防风网透流风存在4个典型分区结构,流场中存在由蝶型形态引起的大尺度分层剪切流动,加强流体动能耗散。透流风在雷诺数300时发生层流至湍流的转捩,而在雷诺数增长至3000以上时,湍流充分发展,纵向流速脉动强度可达70%。防风网整体空气阻力远大于单个孔口射流阻力的线性叠加,射流间的相互作用以及大尺度的分层剪切结构大大增加流体阻力损失,这为通过优化孔口布置和网板形态来节省材料提供了科学依据。  相似文献   

15.
16.
在可压缩多介质粘性流体动力学高精度计算方法MVPPM(multi-viscous-fluid piecewise parabolicmethod)基础上,引入Smagorinsky和Vreman亚格子湍流模型,采用大涡数值模拟方法求解可压缩粘性流体NS(Navier-Stokes)方程,给出适用于可压缩多介质流体界面不稳定性发展演化至湍流阶段的计算方法和二维计算程序MVFT(multi-viscosity-fluid and turbulence)。在2种亚格子湍流模型下计算了LANL(Los Ala-mos National Laboratory)激波管单气柱RM不稳定性实验,分析了气柱的形状、流场速度以及涡的特征,通过与LANL实验和计算结果的比较可知,Vreman模型略优于Smagorinsky模型,MVFT方法和计算程序可用于对界面不稳定性发展演化至湍流阶段的数值模拟。  相似文献   

17.
为更准确地把握交汇角对分离区三维几何特性的影响,建立了不同角度的交汇水槽模型并进行数值模拟.采用大涡模拟(LES)方法求解交汇区的湍流流场,并基于平衡层模型的Werner壁面函数法处理近壁区流场.模拟所得垂向流速分布及分离区尺寸等结果与实测资料吻合程度较高.以90°交汇水槽为例较详尽地分析了分离区的三维几何特性,并从流...  相似文献   

18.
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors. The project supported by the National Science Fund for Distinguished Scholars (10125210), the Special Funds for Major State Basic Research Project (G1999032801) and the National Natural Science Foundation of China (19772062)  相似文献   

19.
20.
An efficient ghost-cell immersed boundary (IB) method is proposed for large eddy simulations of three-dimensional incompressible flow in complex geometries. In the framework of finite volume method, the Navier–Stokes equations are integrated using an explicit time advancement scheme on a collocated mesh. Since the IB method is known to generate an unphysical velocity field inside the IB that violates the mass conservation of the cells near the IB, a new IB treatment is devised to eliminate the unphysical velocity generated near the IB and to improve the pressure distribution on the body surface. To validate the proposed method, both laminar and turbulent flow cases are presented. In particular, large eddy simulations were performed to simulate the turbulent flows over a circular cylinder and a sphere at subcritical Reynolds numbers. The computed results show good agreements with the published numerical and experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号