共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effects of spin–orbit (SO) interactions on noncollinear molecular magnetism by combining the classical Dzyaloshinsky–Moriya (DM) model and ab initio generalized spin orbital (GSO) method. We have derived an estimation scheme of the magnetic anisotropy energy (MAE) and the Dzyaloshinsky vector based on the SO first‐order perturbation theory (SOPT1) for GSO Hartree–Fock (GHF) solutions. We found that the fundamental results of GHF‐SOPT1 method can be reproduced by diagonalizing the core Hamiltonian plus SO terms, and that the spin topologies of odd‐ring systems can be determined by the topological indices of the singly occupied molecular orbitals. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 相似文献
2.
The all-valence INDO method has been modified for the inclusion of spin–orbit coupling effects. In the method presented, the Hamiltonian includes spin–orbit coupling and the basis set constitutes the singlet and triplet determinental wave functions constructed from molecular orbitals resulting from nonrelativistic calculations. Eigenvectors obtained are later used for the evaluation of transition probabilities among different states. The results presented include lifetimes of different states of organic molecules and transition energies for halogen molecules and they are in a good agreement with experimental results. © 1992 John Wiley & Sons, Inc. 相似文献
3.
The entire 30 Ω states generated from the 12 valence and two Rydberg Λ–S states of the BS radical have been studied at the MR-CISD + Q level of theory for the first time. The effects of spin–orbit coupling and the avoided crossing rule between electronic states of the same symmetry were analyzed. Spectroscopic constants of several excited states that have never been observed in experiment were obtained. The transition properties of several low-lying bound excited states to ground state transitions, including the transition dipole moments and the Franck–Condon factors, were also calculated, from which the corresponding single-channel radiative lifetimes were derived. 相似文献
4.
Relativistic calculations of the low-lying electronic states of the ZnO molecule are performed for the Λ–Σ states, 1Σ +, 1Π, 1Δ, 3Π and 3Σ −, at the CCSD(T) or MRCI level, using scalar relativistic energy-consistent pseudopotentials, and the EPCISO method for spin–orbit CI coupling. The ZnO ground state is assigned to 0 + symmetry and has 1Σ + character around the equilibrium region. The spectroscopic constants ( re, ωe) of the 0 + ground state are in good agreement with experimental results. Interpenetration of the vibrational levels of the two lowest 0 + states is also shown. 相似文献
6.
By using the electronic wave functions obtained from an ab initio calculation, including the spin‐orbit coupling, the electronic transition moments have been investigated for two bound states of symmetry Ω = 1/2 and Ω = 3/2 of the molecular ion KRb +. Based on a canonical functions approach for the determination of the vibrational wave functions, the matrix elements have been calculated for the bound states considered for v = 0, 10, 20 with v′‐ v = 0, 1, 2, …, 6; by using the same canonical approach, the eigenvalues and abscissas of the corresponding turning points ( rmin and rmax) have been investigated for these states that obtained from a theoretical ab initio calculation up to v = 105. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 相似文献
7.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T 1 and T 2) that lie below the energy of the excited singlet one (S 1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc. 相似文献
8.
Using the unitary group approach it is shown that the amount of storage needed for the construction of symbolic CI matrix element lists for N-electron basis functions with large numbers of open shells and arbitrary multiplicities may substantially be reduced compared to methods currently available in the literature. 相似文献
9.
Flavins are central molecular chromophores for many photobiological processes. In this paper, several aspects of the photophysics and photochemistry of lumiflavin in a (protein) environment will be studied with the help of quantum chemical methods. In a first part of the paper, we present vertical singlet excitation energies for lumiflavin (a molecule of the isoalloxazin type), using time-dependent density functional theory (TD-DFT) in conjunction with the B3LYP hybrid functional. When calculated for isolated species, TD-DFT excitation energies are generally blue-shifted relative to the experimental absorption spectra of isoalloxazines in solution, or in a protein environment. We develop four different models to account for environmental effects, with special emphasis on the LOV1 domain of Chlamydomonas reinhardtii. It is found that the two lowest, allowed singlet excitations are sensitive to the polarizability of an environment, to hydrogen bonds, and to geometrical constraints imposed by the surrounding protein. All of this brings theory and experiment in better agreement. In the second part of the paper the light-induced adduct formation in LOV domains, between the chromophore and a neighbouring cystein unit is investigated. Energies along a model “reaction path” are calculated on the DFT/B3LYP and MCQDPT2 level of theories. A transition state for a H-transfer between the mercapto (SH–) group of cystein, and the N(5) position of flavin is found. The reaction requires spin–orbit coupling between the S0 and the T1 states of the system. Spin–orbit coupling constants between S0 and T1 are calculated, and found to be in the range of several tens of cm−1 after the transition state was passed. A biradical intermediate was observed along the reaction path. 相似文献
10.
One‐bond spin–spin coupling constants involving selenium of seven different types, 1 J(Se,X), X = 1H, 13C, 15 N, 19 F, 29Si, 31P, and 77Se, were calculated in the series of 14 representative compounds at the SOPPA(CCSD) level taking into account relativistic corrections evaluated both at the RPA and DFT levels of theory in comparison with experiment. Relativistic corrections were found to play a major role in the calculation of 1 J(Se,X) reaching as much as almost 170% of the total value of 1 J(Se,Se) and up to 60–70% for the rest of 1 J(Se,X). Scalar relativistic effects (Darwin and mass‐velocity corrections) by far dominate over spin–orbit coupling in the total relativistic effects for all 1 J(Se,X). Taking into account relativistic corrections at both random phase approximation and density functional theory levels essentially improves the agreement of theoretical results with experiment. The most ‘relativistic’ 1 J(Se,Se) demonstrates a marked Karplus‐type dihedral angle dependence with respect to the mutual orientation of the selenium lone pairs providing a powerful tool for stereochemical analysis of selenoorganic compounds. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
The molecular spin–orbit coupling operator is brought into a simplified form through a convenient choice of origin for the orbital angular momentum operator. The eigenvalue problem of the Hamiltonian that includes the spin–orbit (SOC ) operator as a perturbation is solved by means of a linear variational procedure in the basis of the spin-pure molecular eigenstates. Test calculations on benzophenone are presented and the results are compared to experiment. We discuss the minimal size of the spin-pure variational basis needed to achieve stable results as well as the amount of single-excitation configurational mixing needed to describe the spin-pure molecular eigenstates. 相似文献
12.
Electronic structures of the weakly bound Rn 2 were calculated by the two‐component Møller–Plesset second‐order perturbation and coupled‐cluster methods with relativistic effective core potentials including spin–orbit operators. The calculated spin–orbit effects are small, but depend strongly on the size of basis sets and the amount of electron correlations. Magnitudes of spin–orbit effects on De (0.7–3.0 meV) and Re (−0.4∼−2.2 Å) of Rn 2 are comparable to previously reported values based on configuration interaction calculations. A two‐component approach seems to be a promising tool to investigate spin–orbit effects for the weak‐bonded systems containing heavy elements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 139–143, 1999 相似文献
13.
We report through‐space (TS) 19F– 19F coupling for ortho‐fluoro‐substituted Z ‐azobenzenes. The magnitude of the TS‐coupling constant ( TSJFF) ranged from 2.2–5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non‐bonded F–F distances ( dFF) of 3.0–3.5 Å. These non‐bonded distances are significantly smaller than those determined by X‐ray crystallography or density functional theory, which argues that simple models of 19F– 19F TS spin–spin coupling solely based dFF are not applicable. 1H, 13C and 19F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6‐311++G(d,p)] was used to calculate 19F chemical shifts, and the calculated values deviated 0.3–10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
The vibration and rotation of molecules affects nuclear spin–spin coupling constants. This manifests itself as a temperature dependence of the coupling and also as an isotope effect (after allowing, where necessary, for differing magnetogyric ratios of the two nuclei involved in the isotopic substitution). Within the Born–Oppenheimer approximation, a nuclear spin–spin coupling surface can be defined for each pair of coupled nuclei. This surface is sampled by the nuclei as they undergo the excursions about equilibrium geometry that are governed by the force field. An accurate ab initio carbon–proton spin–spin coupling surface for the methane molecule has been calculated. This was obtained by summing the surfaces for each of the four contributions—Fermi contact, spin–dipolar, orbital paramagnetic, and orbital diamagnetic—expressed as power series in terms of symmetry coordinates. Preliminary calculations for 13CH 4 and 13CD 4 give a difference of only 6% between the calculated and observed nuclear motion contributions. The observed temperature dependence is also accounted for by the calculations. For these isotopomers, bond stretching plays the dominant role. © 1994 John Wiley & Sons, Inc. 相似文献
16.
Expressions of the matrix elements of the spin–other–orbit and spin–orbit interactions for the various multiplets of all the states of ? 2- and ? 3-electron configurations are reported and used to evaluate the Hartree–Fock values of these interactions in the neutral atoms Ce(4? 2), Pr(4? 3), Ho(4? 11) and Er(4? 12). The required values of the spin–spin parameters M, and the spin-orbit parameter ζ for these atoms were obtained using numerical Hartree–Fock wave functions. 相似文献
17.
Fluorene-9- 13C, fluorenone-9- 13C, acenaphthenone-11- 13C, acenaphthenone-12- 13C, 1-methylcyclopentanol-1- 13C and 1-methylcyclopentene-1- 13C were synthesized to obtain J(CC) values between the natural carbons and the labeled carbons. Each of these compounds possessed at least one asymmetric dual-path coupling, i.e., coupling between the labeled carbon and another carbon via simultaneous two- and three-bonded coupling paths. Model 13C-labeled compounds were synthesized where necessary to give expected values of the constituent mono-path couplings. Values of these dual-path couplings ( 2+3) J suggested that the observed value is the (at least approximate) algebraic sum of the two constituent J values. 相似文献
18.
Density functional theory (DFT) was used to estimate water's isotropic nuclear shieldings and indirect nuclear spin–spin coupling constants (SSCCs) in the Kohn–Sham (KS) complete basis set (CBS) limit. Correlation‐consistent cc‐pVxZ and cc‐pCVxZ (x = D, T, Q, 5, and 6), and their modified versions (ccJ‐pVxZ, unc‐ccJ‐pVxZ, and aug‐cc‐pVTZ‐J) and polarization‐consistent pc‐n and pcJ‐n (n = 0, 1, 2, 3, and 4) basis sets were used, and the results fitted with a simple mathematical formula. The performance of over 20 studied density functionals was assessed from comparison with the experiment. The agreement between the CBS DFT‐predicted isotropic shieldings, spin–spin values, and the experimental values was good and similar for the modified correlation‐consistent and polarization‐consistent basis sets. The BHandH method predicted the most accurate 1H, 17O isotropic shieldings and 1J(OH) coupling constant (deviations from experiment of about ? 0.2 and ? 1 ppm and 0.6 Hz, respectively). The performance of BHandH for predicting water isotropic shieldings and 1J(OH) is similar to the more advanced methods, second‐order polarization propagator approximation (SOPPA) and SOPPA(CCSD), in the basis set limit. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
The implementation of a recently proposed technique for evaluating matrix elements of the form 〈Ψ J( r; R)|∂Ψ I( r; R)/t6 Rα〉 r using analytic gradient techniques is described. The Ψ K( r; R) are developed from state-averaged multiconfiguration self-consistent-field/configuration interaction (CI) wavefunctions. The CI wavefunctions are determined using the shape driven graphical unitary group approach. The method is shown to be considerably more efficient than presently existing approaches based on divided differences. As an illustration of the potentialities of this approach non-adiabatic coupling matrix elements are determined for the collinear charge transfer reaction: Mg( 1S) + FH( 1Σ +)→MgF( 2Σ +)+H( 2S). 相似文献
20.
The non-diagonal matrix elements in the adiabatic Born-Oppenheimer approximation are considered. The effect of the Q-dependence of the electronic energy denominator is calculated explicitly for an arbitrary initial and final state. It is shown that the inclusion of this effect does not change the relative values of the coupling matrix elements for different initial vibronic states. 相似文献
|