首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Solid State Sciences》2012,14(2):241-249
In this paper, we present the Compton profiles of Bi2S3 and Bi2Se3 using our 20 Ci 137Cs Compton spectrometer. To compare our experimental data, we have computed the Compton profiles, energy bands and density of states using linear combination of atomic orbitals with density functional theory (DFT) and Hartree-Fock (HF) scheme. It is seen that hybrid functional involving HF and DFT approximations gives a relatively better agreement with experimental momentum densities than other approximations of DFT. We have also reported the band structure, density of states, valence charge densities, dielectric functions and electron energy loss spectra using full potential linearized augmented plane wave scheme. On the basis of charge densities, Mulliken’s population data and equal-valence-electron-density profiles, Bi2S3 is found to be more ionic than Bi2Se3. The calculated dielectric functions for the parallel and perpendicular polarizations show a small anisotropic effect. The electron energy loss spectrum for Bi2Se3 is found to be in good agreement with the available experimental data.  相似文献   

3.
Electronic momentum distributions and Compton profiles have been calculated from minimum basis set SCF wavefunctions for H2O, H2O2, CO, CO2 and H2CO. Radial distributions and profiles have also been estimated for these molecules from localized molecular orbitals. The results suggest that (a) the height of the Compton peak, <p?1>, may be as sensitive to the effects of chemical bonding as the kinetic energy, <p2>/2, and that (b) the virial theorem may provide a more useful criterion than energy minimization in assessing the accuracy of calculated bonding effects and Compton profiles.  相似文献   

4.
We have reported energy bands, density of states, valence electron charge densities and Compton profiles of CsCl, CsBr and CsI using linear combination of atomic orbitals with Hartree–Fock and density functional theories. We have also computed these properties, except the momentum densities, using full potential linearized augmented plane wave method. The general features of the energy bands and the density of states in these halides are found to be almost similar. To interpret the theoretical data on Compton line shapes, we have also measured the Compton profiles using our 20 Ci 137Cs spectrometer. It is seen that the Hartree–Fock calculations give relatively a better agreement with the experimental momentum densities. On the basis of equal-valence-electron-density profiles, a comparison of relative nature of bonding is made which is in agreement with the valence charge densities and atomic charges by means of Mulliken analysis. Using our experimental and theoretical Compton profiles, we have also computed the cohesive energy of the halides.  相似文献   

5.
We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree–Fock/DFT.  相似文献   

6.
Two-dimensional electron density map (2D map) of binding energy and relative azimuthal angle (i.e., momentum) for the outer-valence molecular orbitals of SF6 has been measured by a highly sensitive electron momentum spectrometer with noncoplanar symmetric geometry at the impact energy of 1.2 keV plus binding energy. The experimental electron momentum profiles for the relevant molecular orbitals have been extracted from the 2D map and interpreted on the basis of the quantitative calculations using the density functional theory with B3LYP hybrid functional. For the outermost F2p nonbonding orbitals of SF6, the interference patterns are clearly observed in the ratios of the electron momentum profiles of molecular orbitals to that of atomic F2p orbital.  相似文献   

7.
The cluster (SrB2O4)2 existing in crystalline states is employed to model the electronic structure and linear optical properties of solid state compound SrB2O4. This compound is synthesized by high temperature solution reaction, and it crystallizes in the orthorhombic space group Pbcn with cell dimensions a = 1.1995(3), b = 0.4337(1), c = 0.6575(1) nm, V = 0.34202 nm3, and Z = 4, μ = 15.14 cm?1, Dcaled = 3.36 g/cm3. The dynamic refractive indices are obtained in terms of INDO/SCI following combination with the Sum‐Over‐States method. A width of the calculated gap is 4.424 eV between the valence band and conduction band, and the calculated average refractive index is 1.980 at a wavelength of 1.065 μm. The charge transfers from O2‐ anion orbitals to Sr2+cation orbitals make the significant contributions to linear polarizability in terms of analyses of atomic state density contributing to the valence and conduction bands.  相似文献   

8.
Multiple basis sets are used in calculations of perturbational corrections for triples replacements in the framework of single-reference coupled-cluster theory. We investigate a computational procedure, where the triples correction is calculated from a reduced space of virtual orbitals, while the full space is employed for the coupled-cluster singles-and-doubles model. The reduced space is either constructed from a prescribed unitary transformation of the virtual orbitals (for example into natural orbitals) with subsequent truncation, or from a reduced set of atomic basis functions. After the selection of a reduced space of virtual orbitals, the singles and doubles amplitudes obtained from a calculation in the full space are projected onto the reduced space, the remaining set of virtual orbitals is brought into canonical form by diagonalizing the representation of the Fock operator in the reduced space, and the triples corrections are evaluated as usual. The case studies include the determination of the spectroscopic constants of N2, F2, and CO, the geometry of O3, the electric dipole moment of CO, the static dipole polarizability of F, and the Ne⋯Ne interatomic potential. Received: 28 December 1996 / Accepted: 8 April 1997  相似文献   

9.
The quantum-mechanical virial theorem (in diagonal and nondiagonal forms) for molecules in an external, weak, uniform electric field is used for obtaining the analytical expression of the potentialenergy surface in the Hartree–Fock–Roothaan one-determinantal approximation. The polarizability tensor components of the H2O molecule are computed on this basis. The dependence of basing the atomic orbitals upon the intensity of the applied field lead to good coincidence of results with the data of near Hartree–Fock calculations.  相似文献   

10.
Weinhold's natural hybrid orbitals can be chosen as the molecular adapted atomic orbitals to build the canonical molecular orbitals of N2 molecules. The molecular Fock matrix expanded in the natural hybrid orbitals can reveal deeper insight of the electronic structure and reaction of the N2 molecule. For example, the magnitude of Fab can signify the bonding character of the paired electrons as well as the diradical character of the unpaired electrons for both σ‐ and π‐types. Discarding the concept of the overlap between non‐orthogonal atomic orbitals, the different orbitals for different spins in the unrestricted Hartree‐Fock wavefunction reveal that there are three pairs of opposite spin density flows between two atoms, which proceed until the bonding molecular orbitals form.  相似文献   

11.
Momentum densities obtained from the Heitler-London (HL) wave functions for diatomic molecules and those from the corresponding valence-bond (VB) wave functions including ionic terms are compared. In each case they shown maxima in the direction perpendicular to the bond. However, the dependence of momentum densities on mutual orientations of the two electronic momenta is quite complex in the latter case. The improvement in the Compton profile on including the ionic terms is illustrated with the example of H2. The momentum denmsities obtained from the VB wave function constructed from orthogonalized atomic orbitals (OAO) have also been examined. The HL wave function with OAOS leads to the same momentum distribution as the repulsive state HL wave function constructed from overlapping AOS.  相似文献   

12.
We evaluated the individual atom contributions to the second harmonic generation (SHG) coefficients of LiCs2PO4 (LCPO) by introducing the partial response functionals on the basis of first principles calculations. The SHG response of LCPO is dominated by the metal‐cation‐centered groups CsO6 and LiO4, not by the nonmetal‐cation‐centered groups PO4 expected from the existing models and theories. The SHG coefficients of LCPO are determined mainly by the occupied orbitals O 2p and Cs 5p as well as by the unoccupied orbitals Cs 5d and Li 2p. For the SHG response of a material, the polarizable atomic orbitals of the occupied and the unoccupied states are both important.  相似文献   

13.
The excited states of ethylene are systematically analyzed and characterized according to the natural orbitals (NOs) resulting from multireference configuration interaction singles and doubles (MRCISD) calculations. By comparing the shapes and nodal structures of the NOs with those of hydrogen atomic orbitals, the Rydberg series can be classified. Two or three different types of Rydberg series appear within five excited states for each symmetry of D2h. For example, in the 1Ag symmetry there are three series having np and two nf hydrogen‐like atomic orbitals. Electronic correlation effects for the (π→π*) V state are also discussed on the basis of a complete active space self‐consistent field (CASSCF) calculation, showing that electron correlation effects merely within the valence space cannot explain contraction of the V state. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

14.
The amino groups of thio- and selenoamides can act as stronger hydrogen-bond donors than of carboxamides, despite the lower electronegativity of S and Se. This phenomenon has been experimentally explored, particularly in organocatalysis, but a sound electronic explanation is lacking. Our quantum chemical investigations show that the NH2 groups in thio- and selenoamides are more positively charged than in carboxamides. This originates from the larger electronic density flow from the nitrogen lone pair of the NH2 group towards the lower-lying π*C=S and π*C=Se orbitals than to the high-lying π*C=O orbital. The relative energies of the π* orbitals result from the overlap between the chalcogen np and carbon 2p atomic orbitals, which is set by the carbon-chalcogen equilibrium distance, a consequence of the Pauli repulsion between the two bonded atoms. Thus, neither the electronegativity nor the often-suggested polarizability but the steric size of the chalcogen atom determines the amide's hydrogen-bond donor capability.  相似文献   

15.
Methods are suggested for optimization of Slater type atomic orbitals in polarizability calculations of closed-shell atoms using “bound” perturbation theory (algebraic version of the Hartree-Fock method). The size and composition of the basis set of atomic orbitals providing the Hartree-Fock limit for perturbation parameters are considered. Dipolar polarizabilities are calculated for He, Be, Ne, and Mg atoms and their isoelectronic series. Translated fromZhurnal Strukturnoi Khimii, Vol. 41, No. 3, pp. 439-448, May–June, 2000.  相似文献   

16.
In a recent publication [C. A. Nicolaides and Y. Komninos, Int. J. Quant. Chem. 67 , 321 (1998)], we proposed that in certain classes of molecules the fundamental reason for the formation of covalent polyatomic molecules in their normal shape is to be found in the existence of a geometrically active atomic state (GAAS) of the central atom, whose shape, together with its maximum spin‐and‐space coupling to the ligands, predetermines the normal molecular shape (NMS). The shape of any atomic state was defined as that which is deduced from the maxima of the probability distribution ϱ(cos θ12) of the angle formed by the position vectors of two electrons of an N‐electron atom. Because the shape of the GAAS determines the NMS and because the NMS allows the construction of corresponding hybrid orbitals, we examined and discovered the connection between the GAAS shape and Pauling's function for the strength of two equivalent orthogonal orbitals at angle θ12 with one another. It is shown that the computed ϱ(cos θ12) of the GAAS can be cast in a form which allows the deduction of the composition of the hybrid orbitals of maximum spin states with configurations sp3, sp3d5, sp3d5f7, sln, s2ln and the demonstration of the central atom's tendency to form bonds in directions which coincide with the nodal cones of the hybrid bond orbitals. These results not only reinforce the validity of the theory as to the fundamental “mechanism” for the formation in the normal shape of coordination compounds and covalently bonded polyatomic molecules, but also provide the justification for the relevance and importance of the hybridization model. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 25–34, 1999  相似文献   

17.
The radial momentum distribution Io(p) and the Compton profile Jo(q) are determined for atomic neon from several restrictid Hartree-Fock (RHF) wavefunctions and two configuration interaction (CI) wavefunctions. The CI functions are the well correlated (full“second-order”) function of Viers, Schaeffer and Harris, and the Ahlrichs-Hinze multi-configuration Hartree-Fock (MCHF) function which includes only L-shell correlation. It is found for this completely closed shell system that the effects of electron correlation are quite small. This contrasts with the results for systems such as Be(2S) and B(2P) where the semi-internal and internal correlation effects were responsible for significant discrepancies between the RHF and CI results. These results indicate that a wavefunction which carefully includes the semi-internal, orbital polarization, and internal correlations beyond the RHF wavefunction (i.e., a “first-order” or “charge-density” function), should account for the principal correlation effects on the Compton profiles and momentum distributions.  相似文献   

18.
The early stages of the Coulomb explosion of a doubly ionized water molecule immersed in liquid water are investigated with time‐dependent density functional theory molecular dynamics (TD–DFT MD) simulations. Our aim is to verify that the double ionization of one target water molecule leads to the formation of atomic oxygen as a direct consequence of the Coulomb explosion of the molecule. To that end, we used TD–DFT MD simulations in which effective molecular orbitals are propagated in time. These molecular orbitals are constructed as a unitary transformation of maximally localized Wannier orbitals, and the ionization process was obtained by removing two electrons from the molecular orbitals with symmetry 1B1, 3A1, 1B2 and 2A1 in turn. We show that the doubly charged H2O2+ molecule explodes into its three atomic fragments in less than 4 fs, which leads to the formation of one isolated oxygen atom whatever the ionized molecular orbital. This process is followed by the ultrafast transfer of an electron to the ionized molecule in the first femtosecond. A faster dissociation pattern can be observed when the electrons are removed from the molecular orbitals of the innermost shell. A Bader analysis of the charges carried by the molecules during the dissociation trajectories is also reported.  相似文献   

19.
IntroductionThebulkpreparation1ofC6 0 andC70 clusters(fullerenes)hasstimulatedawidevarietyofexperimentalandtheoreticalstudies .2 5Wehavesuccessfullyexaminedthestructures ,UV visiblespectraandthenonlinearthird orderopticalpolarizabilities (γ)ofC6 0 andC70 .6 ,7Byin troductionofsubstituents ,thecentrosymmetriesofC6 0 andC70 arebrokenandthesecond orderopticalnonlinearitiesareinduced .ThechargeseparationinsubstitutedC6 0whichleadstoenhancementofβvaluehasalsobeendis cussed .5Inrecentyears ,a…  相似文献   

20.
Heteronuclear transition‐metal–main‐group‐element carbonyl complexes of AsFe(CO)3, SbFe(CO)3, and BiFe(CO)3 were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass‐selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3. Chemical bonding analyses on the whole series of AFe(CO)3 (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp–p) type of transition‐metal–main‐group‐element multiple bonding. The σ‐type three‐orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3 (A=As, Sb, Bi) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号