首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.  相似文献   

2.
《Chemistry & biology》1996,3(6):449-462
Background: Molecular docking seeks to predict the geometry and affinity of the binding of a small molecule to a given protein of known structure. Rigid docking has long been used to screen databases of small molecules, because docking techniques that account for ligand flexibility have either been too slow or have required significant human intervention. Here we describe a docking algorithm, Hammerhead, which is a fast, automated tool to screen for the binding of flexible molecules to protein binding sites.Results: We used Hammerhead to successfully dock a variety of positive control ligands into their cognate proteins. The empirically tuned scoring function of the algorithm predicted binding affinities within 1.3 log units of the known affinities for these ligands. Conformations and alignments close to those determined crystallographically received the highest scores. We screened 80 000 compounds for binding to streptavidin, and biotin was predicted as the top-scoring ligand, with other known ligands included among the highest-scoring dockings. The screen ran in a few days on commonly available hardware.Conclusions: Hammerhead is suitable for screening large databases of flexible molecules for binding to a protein of known structure. It correctly docks a variety of known flexible ligands, and it spends an average of only a few seconds on each compound during a screen. The approach is completely automated, from the elucidation of protein binding sites, through the docking of molecules, to the final selection of compounds for assay.  相似文献   

3.
Drug discovery research often relies on the use of virtual screening via molecular docking to identify active hits in compound libraries. An area for improvement among many state-of-the-art docking methods is the accuracy of the scoring functions used to differentiate active from nonactive ligands. Many contemporary scoring functions are influenced by the physical properties of the docked molecule. This bias can cause molecules with certain physical properties to incorrectly score better than others. Since variation in physical properties is inevitable in large screening libraries, it is desirable to account for this bias. In this paper, we present a method of normalizing docking scores using virtually generated decoy sets with matched physical properties. First, our method generates a set of property-matched decoys for every molecule in the screening library. Each library molecule and its decoy set are docked using a state-of-the-art method, producing a set of raw docking scores. Next, the raw docking score of each library molecule is normalized against the scores of its decoys. The normalized score represents the probability that the raw docking score was drawn from the background distribution of nonactive property-matched decoys. Assuming that the distribution of scores of active molecules differs from the nonactive score distribution, we expect that the score of an active compound will have a low probability of having been drawn from the nonactive score distribution. In addition to the use of decoys in normalizing docking scores, we suggest that decoy sets may be a useful tool to evaluate, improve, or develop scoring functions. We show that by analyzing docking scores of library molecules with respect to the docking scores of their virtually generated property-matched decoys, one can gain insight into the advantages, limitations, and reliability of scoring functions.  相似文献   

4.
We have developed a method that uses energetic analysis of structure-based fragment docking to elucidate key features for molecular recognition. This hybrid ligand- and structure-based methodology uses an atomic breakdown of the energy terms from the Glide XP scoring function to locate key pharmacophoric features from the docked fragments. First, we show that Glide accurately docks fragments, producing a root mean squared deviation (RMSD) of <1.0 Å for the top scoring pose to the native crystal structure. We then describe fragment-specific docking settings developed to generate poses that explore every pocket of a binding site while maintaining the docking accuracy of the top scoring pose. Next, we describe how the energy terms from the Glide XP scoring function are mapped onto pharmacophore sites from the docked fragments in order to rank their importance for binding. Using this energetic analysis we show that the most energetically favorable pharmacophore sites are consistent with features from known tight binding compounds. Finally, we describe a method to use the energetically selected sites from fragment docking to develop a pharmacophore hypothesis that can be used in virtual database screening to retrieve diverse compounds. We find that this method produces viable hypotheses that are consistent with known active compounds. In addition to retrieving diverse compounds that are not biased by the co-crystallized ligand, the method is able to recover known active compounds from a database screen, with an average enrichment of 8.1 in the top 1% of the database.  相似文献   

5.
Anilinopyrazoles as CDK2 inhibitors can adopt multiple binding modes depending on the substituents at the 5-position of the pyrazole ring, based on CDK2/cyclin A crystallographic studies. Three commercially available docking programs, FlexX, GOLD, and LigandFit, were tested with 63 anilinopyrazole analogues in an attempt to reproduce the binding modes observed in the crystal structures. Each docking program gave different ligand conformations depending on the scoring or energy functions used. FlexX/drugscore, GOLD/chemscore, and LigandFit/plp were the best combinations of each docking program in reproducing the ligand conformations observed in the crystal structures. The 63 analogues were divided into two groups, type-A and type-B, depending on the substituent at the 5-position of the pyrazole ring. Although an alternate binding mode, observed in a crystal structure of one type-B compound, could not be reproduced with any of the above docking/scoring combinations, GOLD, with a template constraint based on the crystal structure coordinates, was able to reproduce the pose. As for type-A compounds, all docking conditions yielded similar poses to those observed in crystal structures. When predicting activities by scoring programs, the combination of docking with LigandFit/plp and scoring with LIGSCORE1_CFF gave the best correlation coefficient (r=0.60) between experimental pIC50 values and top-ranked rescores of 30 poses of each compound. With regard to type-A compounds, the correlation was 0.69. However, when 11 compounds, whose top-ranked rescored poses did not demonstrate the correct binding modes in reference to the crystal structure, were removed, the correlation rose to 0.75. Consequently, predicting activity on the basis of correct binding modes was found to be reliable.  相似文献   

6.
Improving the scoring functions for small molecule-protein docking is a highly challenging task in current computational drug design. Here we present a novel consensus scoring concept for the prediction of binding modes for multiple known active ligands. Similar ligands are generally believed to bind to their receptor in a similar fashion. The presumption of our approach was that the true binding modes of similar ligands should be more similar to each other compared to false positive binding modes. The number of conserved (consensus) interactions between similar ligands was used as a docking score. Patterns of interactions were modeled using ligand receptor interaction fingerprints. Our approach was evaluated for four different data sets of known cocrystal structures (CDK-2, dihydrofolate reductase, HIV-1 protease, and thrombin). Docking poses were generated with FlexX and rescored by our approach. For comparison the CScore scoring functions from Sybyl were used, and consensus scores were calculated thereof. Our approach performed better than individual scoring functions and was comparable to consensus scoring. Analysis of the distribution of docking poses by self-organizing maps (SOM) and interaction fingerprints confirmed that clusters of docking poses composed of multiple ligands were preferentially observed near the native binding mode. Being conceptually unrelated to commonly used docking scoring functions our approach provides a powerful method to complement and improve computational docking experiments.  相似文献   

7.
We present the results of a comprehensive study in which we explored how the docking procedure affects the performance of a virtual screening approach. We used four docking engines and applied 10 scoring functions to the top-ranked docking solutions of seeded databases against six target proteins. The scores of the experimental poses were placed within the total set to assess whether the scoring function required an accurate pose to provide the appropriate rank for the seeded compounds. This method allows a direct comparison of library ranking efficacy. Our results indicate that the LigandFit/Ligscore1 and LigandFit/GOLD docking/scoring combinations, and to a lesser degree FlexX/FlexX, Glide/Ligscore1, DOCK/PMF (Tripos implementation), LigandFit1/Ligscore2 and LigandFit/PMF (Tripos implementation) were able to retrieve the highest number of actives at a 10% fraction of the database when all targets were looked upon collectively. We also show that the scoring functions rank the observed binding modes higher than the inaccurate poses provided that the experimental poses are available. This finding stresses the discriminatory ability of the scoring algorithms, when better poses are available, and suggests that the number of false positives can be lowered with conformers closer to bioactive ones.  相似文献   

8.
Empirical scoring functions used in protein-ligand docking calculations are typically trained on a dataset of complexes with known affinities with the aim of generalizing across different docking applications. We report a novel method of scoring-function optimization that supports the use of additional information to constrain scoring function parameters, which can be used to focus a scoring function’s training towards a particular application, such as screening enrichment. The approach combines multiple instance learning, positive data in the form of ligands of protein binding sites of known and unknown affinity and binding geometry, and negative (decoy) data of ligands thought not to bind particular protein binding sites or known not to bind in particular geometries. Performance of the method for the Surflex-Dock scoring function is shown in cross-validation studies and in eight blind test cases. Tuned functions optimized with a sufficient amount of data exhibited either improved or undiminished screening performance relative to the original function across all eight complexes. Analysis of the changes to the scoring function suggest that modifications can be learned that are related to protein-specific features such as active-site mobility.  相似文献   

9.
In general, the docking scoring tends to have a size dependence related to the ranking of compounds. In this paper, we describe a novel method of parameter optimization for docking scores which reduce the size dependence and can efficiently discriminate active compounds from chemical databases. This method is based on a simplified theoretical model of docking scores which enables us to utilize large amounts of data of known active and inactive compounds for a particular target without requiring large computational resources or a complicated procedure. This method is useful for making scoring functions for the identification of novel scaffolds using the knowledge of active compounds for a particular target or a customized scoring function for an interesting family of drug targets.  相似文献   

10.
We report an investigation designed to explore alternative approaches for ranking of docking poses in the search for antagonists of the adenosine A2A receptor, an attractive target for structure-based virtual screening. Calculation of 3D similarity of docking poses to crystallographic ligand(s) as well as similarity of receptor–ligand interaction patterns was consistently superior to conventional scoring functions for prioritizing antagonists over decoys. Moreover, the use of crystallographic antagonists and agonists, a core fragment of an antagonist, and a model of an agonist placed into the binding site of an antagonist-bound form of the receptor resulted in a significant early enrichment of antagonists in compound rankings. Taken together, these findings showed that the use of binding modes of agonists and/or antagonists, even if they were only approximate, for similarity assessment of docking poses or comparison of interaction patterns increased the odds of identifying new active compounds over conventional scoring.  相似文献   

11.
蛋白质-蛋白质分子对接中打分函数研究进展   总被引:2,自引:0,他引:2  
分子对接是研究分子间相互作用与识别的有效方法.其中,用于近天然构象挑选的打分函数的合理设计对于对接中复合物结构的成功预测至关重要.本文回顾了蛋白质-蛋白质分子对接组合打分函数中一些主要打分项,包括几何互补项、界面接触面积、范德华相互作用能、静电相互作用能以及统计成对偏好势等打分项的计算方法.结合本研究小组的工作,介绍了目前普遍使用的打分方案以及利用与结合位点有关的信息进行结构筛选的几种策略,比较并总结了常用打分函数的特点.最后,分析并指出了当前蛋白质-蛋白质对接打分函数所存在的主要问题,并对未来的工作进行了展望.  相似文献   

12.
Docking scoring functions are notoriously weak predictors of binding affinity. They typically assign a common set of weights to the individual energy terms that contribute to the overall energy score; however, these weights should be gene family dependent. In addition, they incorrectly assume that individual interactions contribute toward the total binding affinity in an additive manner. In reality, noncovalent interactions often depend on one another in a nonlinear manner. In this paper, we show how the use of support vector machines (SVMs), trained by associating sets of individual energy terms retrieved from molecular docking with the known binding affinity of each compound from high-throughput screening experiments, can be used to improve the correlation between known binding affinities and those predicted by the docking program eHiTS. We construct two prediction models: a regression model trained using IC(50) values from BindingDB, and a classification model trained using active and decoy compounds from the Directory of Useful Decoys (DUD). Moreover, to address the issue of overrepresentation of negative data in high-throughput screening data sets, we have designed a multiple-planar SVM training procedure for the classification model. The increased performance that both SVMs give when compared with the original eHiTS scoring function highlights the potential for using nonlinear methods when deriving overall energy scores from their individual components. We apply the above methodology to train a new scoring function for direct inhibitors of Mycobacterium tuberculosis (M.tb) InhA. By combining ligand binding site comparison with the new scoring function, we propose that phosphodiesterase inhibitors can potentially be repurposed to target M.tb InhA. Our methodology may be applied to other gene families for which target structures and activity data are available, as demonstrated in the work presented here.  相似文献   

13.
Targeting SARS-CoV-2 papain-like protease using inhibitors is a suitable approach for inhibition of virus replication and dysregulation of host anti-viral immunity. Engaging all five binding sites far from the catalytic site of PLpro is essential for developing a potent inhibitor. We developed and validated a structure-based pharmacophore model with 9 features of a potent PLpro inhibitor. The pharmacophore model-aided virtual screening of the comprehensive marine natural product database predicted 66 initial hits. This hit library was downsized by filtration through a molecular weight filter of ≤ 500 g/mol. The 50 resultant hits were screened by comparative molecular docking using AutoDock and AutoDock Vina. Comparative molecular docking enables benchmarking docking and relieves the disparities in the search and scoring functions of docking engines. Both docking engines retrieved 3 same compounds at different positions in the top 1 % rank, hence consensus scoring was applied, through which CMNPD28766, aspergillipeptide F emerged as the best PLpro inhibitor. Aspergillipeptide F topped the 50-hit library with a pharmacophore-fit score of 75.916. Favorable binding interactions were predicted between aspergillipeptide F and PLpro similar to the native ligand XR8-24. Aspergillipeptide F was able to engage all the 5 binding sites including the newly discovered BL2 groove, site V. Molecular dynamics for quantification of Cα-atom movements of PLpro after ligand binding indicated that it exhibits highly correlated domain movements contributing to the low free energy of binding and a stable conformation. Thus, aspergillipeptide F is a promising candidate for pharmaceutical and clinical development as a potent SARS-CoV-2 PLpro inhibitor.  相似文献   

14.
Protein-ligand docking is an essential technique in computer-aided drug design. While generally available docking programs work well for most drug classes, carbohydrates and carbohydrate-like compounds are often problematic for docking. We present a new docking method specifically designed to handle docking of carbohydrate-like compounds. BALLDock/SLICK combines an evolutionary docking algorithm for flexible ligands and flexible receptor side chains with carbohydrate-specific scoring and energy functions. The scoring function has been designed to identify accurate ligand poses, while the energy function yields accurate estimates of the binding free energies of these poses. On a test set of known protein-sugar complexes we demonstrate the ability of the approach to generate correct poses for almost all of the structures and achieve very low mean errors for the predicted binding free energies.  相似文献   

15.
Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein–ligand complementarities. Interestingly, while protein–ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state‐of‐the‐art protein‐ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Several combinations of docking software and scoring functions were evaluated for their ability to predict the binding of a dataset of potential HIV integrase inhibitors. We found that different docking software were appropriate for each one of the three binding sites considered (LEDGF, Y3 and fragment sites), and the most suitable two docking protocols, involving Glide SP and Gold ChemScore, were selected using a training set of compounds identified from the structural data available. These protocols could successfully predict respectively 20.0 and 23.6 % of the HIV integrase binders, all of them being present in the LEDGF site. When a different analysis of the results was carried out by removing all alternate isomers of binders from the set, our predictions were dramatically improved, with an overall ROC AUC of 0.73 and enrichment factor at 10 % of 2.89 for the prediction obtained using Gold ChemScore. This study highlighted the ability of the selected docking protocols to correctly position in most cases the ortho-alkoxy-carboxylate core functional group of the ligands in the corresponding binding site, but also their difficulties to correctly rank the docking poses.  相似文献   

17.
Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.  相似文献   

18.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

19.
Molecular docking is a powerful tool for theoretical prediction of the preferred conformation and orientation of small molecules within protein active sites. The obtained poses can be used for estimation of binding energies, which indicate the inhibition effect of designed inhibitors, and therefore might be used for in silico drug design. However, the evaluation of ligand binding affinity critically depends on successful prediction of the native binding mode. Contemporary docking methods are often based on scoring functions derived from molecular mechanical potentials. In such potentials, nonbonded interactions are typically represented by electrostatic interactions between atom‐centered partial charges and standard 6–12 Lennard–Jones potential. Here, we present implementation and testing of a scoring function based on more physically justified exponential repulsion instead of the standard Lennard–Jones potential. We found that this scoring function significantly improved prediction of the native binding modes in proteins bearing narrow active sites such as serine proteases and kinases. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Molecular docking is a powerful computational method that has been widely used in many biomolecular studies to predict geometry of a protein-ligand complex. However, while its conformational search algorithms are usually able to generate correct conformation of a ligand in the binding site, the scoring methods often fail to discriminate it among many false variants. We propose to treat this problem by applying more precise ligand-specific scoring filters to re-rank docking solutions. In this way specific features of interactions between protein and different types of compounds can be implicitly taken into account. New scoring functions were constructed including hydrogen bonds, hydrophobic and hydrophilic complementarity terms. These scoring functions also discriminate ligands by the size of the molecule, the total hydrophobicity, and the number of peptide bonds for peptide ligands. Weighting coefficients of the scoring functions were adjusted using a training set of 60 protein-ligand complexes. The proposed method was then tested on the results of docking obtained for an additional 70 complexes. In both cases the success rate was 5-8% better compared to the standard functions implemented in popular docking software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号