首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Formulas for decomposing of complex crystals to a sum of binary crystals are described and applied to the study of bond covalency in La1−xSrxFeO3 (0.0≤x≤0.9) and Ca1−xSrxMnO3 (0.0≤x≤0.5). The bond valence is treated by bond-valence sums scheme. The results indicate that, for both compounds, with the increasing doping level, the bond covalency and bond valence show the same trend, namely, larger bond covalency corresponds to higher bond valence. For La1−xSrxFeO3, with the increase of doping level, the bond covalency of La−O, Ca−O decreases in the orthorhombic (0.0≤x≤0.2) and rhombohedral (0.4≤x≤0.7) systems, then increases slightly for the cubic (0.8≤x≤0.9) system, but that of Fe−O increases for all crystal systems. A sharp decrease in bond covalency was observed where the crystal changes from orthorhombic to rhombohedral, while a smooth trend was seen for the rhombohedral-to-cubic transition. On the other hand, for orthorhombic Ca1−xSrxMnO3, the bond covalency of Ca−O, Sr−O, and Mn−O (4-coordinate site) decreases with the increasing doping level, that of Mn−O (2-coordinate site) increases.  相似文献   

2.
3.
A mixed‐valence Mn complex {[MnIIMnIII(HL)2(4,4′‐bpy)(H2O)2] · (ClO4)(DMF)3(4,4′‐bpy)0.5}n ( 1 ) [H2L = 3‐(2‐phenol)‐5‐(pyridin‐2‐yl)‐1,2,4‐triazole] was synthesized and characterized by X‐ray single‐crystal structure analysis and magnetic susceptibility. Single‐crystal X‐ray analysis revealed that complex 1 has a dinuclear core, in which adjacent central MnIII atoms are linked by 4,4′‐bipyridine to form an infinite one‐dimensional (1D) molecular configuration. According to the Mn surrounding bond lengths and bond valence sum (BVS) calculations, we demonstrated that the Mn atom coordinated to the pyridine N atoms is in the +2 oxidation state, while another Mn atom coordinated to the phenolic oxygen atoms is in the +3 oxidation state. Magnetic susceptibility data of the complex 1 indicate that the ferromagnetic interaction dominates in this complex.  相似文献   

4.
The crystal structures of MgAl2–xGaxO4 (0 ≤ x ≤ 2) spinel solid solutions (x = 0.00, 0.38, 0.76, 0.96, 1.52, 2.00) were refined using 27Al MAS NMR measurements and single crystal X‐ray diffraction technique. Site preferences of cations were investigated. The inversion parameter (i) of MgAl2O4 (i = 0.206) is slightly larger than given in previous studies. It is considered that the difference of inversion parameter is caused by not only the difference of heat treatment time but also some influence of melting with a flux. The distribution of Ga3+ is little affected by a change of the temperature from 1473 K to 973 K. The degree of order‐disorder of Mg2+ or Al3+ between the fourfold‐ and sixfold‐coordinated sites is almost constant against Ga3+ content (x) in the solid solution. A compositional variable of the Ga/(Mg + Ga) ratio in the sixfold‐coordinated site has a constant value through the whole compositional range: the ratio is not influenced by the occupancy of Al3+. The occupancy of Al3+ is independent of the occupancy of Ga3+, though it depends on the occupancy of Mg2+ according to thermal history. The local bond lengths were estimated from the refined data of solid solutions. The local bond length between specific cation and oxygen corresponds with that expected from the effective ionic radii except local Al–O bond length in the fourfold‐coordinated site and local Mg–O bond length in the sixfold‐coordinated site. The local Al–O bond length in the fourfold‐coordinated site (1.92 Å) is about 0.15 Å longer than the expected bond length. This difference is induced by a difference in site symmetry of the fourfold‐coordinated site. The nature that Al3+ in spinel structure occupies mainly the sixfold‐coordinated site arises from the character of Al3+ itself. The local Mg–O bond length in the sixfold‐coordinated site (2.03 Å) is about 0.07 Å shorter than the expected one. Difference Fourier synthesis for MgGa2O4 shows a residual electron density peak of about 0.17 e/Å3 in height on the center of (Ga0.59 Mg0.41)–O bond. This peak indicates the covalent bonding nature of Ga–O bond on the sixfold‐coordinated site in the spinel structure.  相似文献   

5.
The compounds Yb1+xMg1—xGa4 (0 ≤ x ≤ 0.058) and YLiGa4 were synthesized by direct reaction of the elements in sealed niobium crucibles. The atomic arrangement of Yb1+xMg1—xGa4 (x = 0.058) represents a new structure type (space group Pm2, a = 4.3979(3)Å and c = 6.9671(7)Å) as evidenced by single crystal structure analysis and can be described as an ordered variant of CaIn2. YLiGa4 is isotypic to the ytterbium compound according to X‐ray Guinier powder data (a = 4.3168(1)Å and c = 6.8716(2)Å). Measurements of the magnetic susceptibility of both compounds reveal intrinsic diamagnetic behaviour, i.e., ytterbium in the 4f14 configuration for Yb1+xMg1—xGa4 (x = 0). From electrical resistivity data both compounds can be classified as metals. The compressibility of Yb1+xMg1—xGa4 (x = 0.058) as measured in diamond anvil cells by angle‐dispersive X‐ray diffraction is compatible with a valence change of the ytterbium atoms at high‐pressures and indicates a slight anisotropy which is in accordance with the structural organisation of the gallium network. X‐ray absorption spectra of the Yb LIII edge of Yb1+xMg1—xGa4 (x = 0.058) at pressures up to 25.0 GPa show a two‐peak structure which reveals the presence of Yb in the 4f14 and 4f13 states. The amount of ytterbium in the 4f13 state increases in two steps with progressing compression. The bonding analysis by means of the electron localization function reveals the Zintl‐like character of both compounds and confirms the 4f14 state for the majority of ytterbium atoms.  相似文献   

6.
使用复杂晶体化学键理论计算了La1-xNdxCrO3 (x =0 .0 ,0 .2 ,0 .4,0 .6 ,0 .8,1.0 )的化学键参数 ,如键性、键极化率等。结果表明 ,La-O ,Nd -O和Cr-O键的共价性基本上不随Nd掺杂的变化而变化 ,这个结论与实验结果一致。键极化率和磁距则随着掺杂量的增加而增加。共价性的大小次序为La -O 相似文献   

7.
The title compound, tetrasodium cobalt aluminium hexaarsenate, Na4Co7−xAl2/3x(AsO4)6 (x = 1.37), is isostructural with K4Ni7(AsO4)6; however, in its crystal structure, some of the Co2+ ions are substituted by Al3+ in a fully occupied octahedral site (site symmetry 2/m) and a partially occupied tetrahedral site (site symmetry 2). A third octahedral site is fully occupied by Co2+ ions only. One of the two independent tetrahedral As atoms and two of its attached O atoms reside on a mirror plane, as do two of the three independent Na+ cations, all of which are present at half‐occupancy. The proposed structural model based on a careful investigation of the crystal data is supported by charge‐distribution (CHARDI) analysis and bond‐valence‐sum (BVS) calculations. The correlation between the X‐ray refinement and the validation results is discussed.  相似文献   

8.
Since the discovery of electrochemically active LiFePO4, materials with tunnel and layered structures built up of transition metals and polyanions have become the subject of much research. A new quaternary arsenate, sodium calcium trinickel aluminium triarsenate, NaCa1–x Ni3–2x Al2x (AsO4)3 (x = 0.23), was synthesized using the flux method in air at 1023 K and its crystal structure was determined from single‐crystal X‐ray diffraction (XRD) data. This material was also characterized by qualitative energy‐dispersive X‐ray spectroscopy (EDS) analysis and IR spectroscopy. The crystal structure belongs to the α‐CrPO4 type with the space group Imma . The structure is described as a three‐dimensional framework built up of corner‐edge‐sharing NiO6, (Ni,Al)O6 and AsO4 polyhedra, with channels running along the [100] and [010] directions, in which the sodium and calcium cations are located. The proposed structural model has been validated by bond‐valence‐sum (BVS) and charge‐distribution (CHARDI) tools. The sodium ionic conduction pathways in the anionic framework were investigated by means of the bond‐valence site energy (BVSE) model, which predicted that the studied material will probably be a very poor Na+ ion conductor (bond‐valence activation energy ∼7 eV).  相似文献   

9.
The local structure of the double perovskite (Sr2‐xCax)FeMoO6 (0 ≤ × ≤ 2.0) and Sr2CrMO6 (M = Mo, W) systems have been probed by extended X‐ray absorption fine structure (EXAFS) spectroscopy at the Fe and Cr K‐edges. We found Fe‐O (ave) distance apparently decreases from 1.999 Å (x = 0) to 1.991 Å (x = 1.0) in (Sr2‐xCax)FeMoO6 (tetragonal structure). When x is increased further from 1.5 to 2.0, the Fe‐O bond distance decreased from 2.034 Å to 2.012 Å (monoclinic structure). In addition, Cr‐O, Sr‐Cr, and Cr‐Mo bond distances in Sr2CrWO6 are all slightly larger than the bond distances of Sr2CrMoO6, which is due to the ionic radius of the W5+ (0.62 Å) which is larger than the ionic radius of Mo5+ (0.61 Å). The results are consistent with our XRD refinements data.  相似文献   

10.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

11.
over tile years, tile collcept of bolld covalellcy or ionicity has been proved to be a veryilllpol'tallt quantity in classifyillg and explaining many basic properties of molecules andsolids from the viewpoint of the electronic structure. Nevertheless, previous study in thisaspect was only on binary crystals, which limited the usefulness of the theory. Therecently proposed method I for the evaluation of chemical bond parameters includingbond covalency has made the study on crystals with multipl…  相似文献   

12.
The new clathrate Ba8–xEuxGe433 (x = 0.6) was synthesized at a pressure of 1 GPa and temperatures of up to 1220 K by means of a multi‐anvil device (Walker module) and a hydraulic 1000 ton press. X‐ray powder diffraction data indicate that the crystal structure of Ba8–xEuxGe433 (x = 0.6, space group , a = 21.2588(3) Å) corresponds to that of Ba8Ge433. Measurements of the magnetic susceptibility of Ba8–xEuxGe433 reveal Curie‐paramagnetic behaviour and prove that the electronic state of europium corresponds to 4f7, i.e., Eu2+. Electrical resistivity shows a metal‐like temperature dependence and ρ(300) ≈ 2mΩ cm for x = 0.6. Heat capacity measurements reveal an upturn of cp/T(T) below 7 K that is attributed to magnetic interaction of the europium ions.  相似文献   

13.
Mixed-valence copper(II/III) oxide solid solutions Sr2?xNaxCuO3 (0 ≤ x ≤ 1) have been prepared by solid-state reactions in oxygen atmosphere. All solid solutions exhibit the structure of Sr2CuO3 (S.G. Immm). Electrical conductivity and thermoelectric power measurements show a semiconducting behavior in the whole composition range. The electronic structure of Sr2CuO3 is compared with that of La2CuO4 on the basis of an iono-covalent model. Interpretation of transport properties suggests the formation of small polarons. Magnetic susceptibility and EPR measurements show that the antiferromagnetic ordering of Sr2CuO3 tends to vanish as x increases, however magnetic interactions are still strong for a concentration of Cu2+ ions corresponding to x = 0.8.  相似文献   

14.
15.
Ba5Fe6+xS4+xO8 was synthesized through a solid‐state reaction, and pure powders of nominal compositions x=0.44–0.55 were obtained after being rinsed with water. The crystal structures (P4/mmm, a=10.13, c=4.03 Å) and sample purities were investigated by powder synchrotron X‐ray diffraction and were found to be composed of a tunnel lattice (Ba5Fe6S4O8), built from fused perovskite units and the tunnel filling (FexSx). The variable composition, that is, the tunnel filling (x), causes partially occupied sites as well as crystallographic split positions. Ba5Fe6+xS4+xO8 (x=0.525) is semiconducting and all investigated compositions exhibit magnetic ground states that could be described as either semi‐spin‐glass‐like (x>0.5) or canted antiferromagnetic (x<0.5). The spin‐glass in x=0.525 exhibits magnetic relaxations that are affected by ageing.  相似文献   

16.
Transition metal (TM)‐based bimetallic spinel oxides can efficiently activate peroxymonosulfate (PMS) presumably attributed to enhanced electron transfer between TMs, but the existing model cannot fully explain the efficient TM redox cycling. Here, we discover a critical role of TM?O covalency in governing the intrinsic catalytic activity of Co3?xMnxO4 spinel oxides. Experimental and theoretical analysis reveals that the Co sites significantly raises the Mn valence and enlarges Mn?O covalency in octahedral configuration, thereby lowering the charge transfer energy to favor MnOh–PMS interaction. With appropriate MnIV/MnIII ratio to balance PMS adsorption and MnIV reduction, the Co1.1Mn1.9O4 exhibits remarkable catalytic activities for PMS activation and pollutant degradation, outperforming all the reported TM spinel oxides. The improved understandings on the origins of spinel oxides activity for PMS activation may inspire the development of more active and robust metal oxide catalysts.  相似文献   

17.
Two isoelectronic series, Eu(Ga1−xTtx)2 (Tt=Si, Ge, 0≤x≤1), have been synthesized and characterized by powder and single-crystal X-ray diffraction, physical property measurements, and electronic structure calculations. In Eu(Ga1−xSix)2, crystal structures vary from the KHg2-type to the AlB2-type, and, finally, the ThSi2-type structure as x increases. The hexagonal AlB2-type structure is identified for compositions 0.18(2)≤x<0.70(2) with Ga and Si atoms statistically distributed in the polyanionic 63 nets. As smaller Si atoms replace Ga atoms while the number of valence electrons increases, the lattice parameters, unit cell volumes, and Ga–Si distances in this phase region decrease significantly. Although aspects of X-ray diffraction results suggest puckering of the 63 nets for the Si-richest example of the AlB2-type Eu(Ga1−xSix)2, the complete experimental evidence remains inconclusive. On the other hand, in Eu(Ga1−xGex)2, six different structural types were observed as x varies. In addition to EuGa2 (KHg2-type; space group Imma) and EuGe2 (own structure type, space group Pm1), the ternary phases studied show four different structures: the AlB2-type for Ga-rich compositions; the YPtAs-type structure for EuGaGe; and two new structures, which are intergrowths of the YPtAs-type EuGaGe and EuGe2, for Ge-rich compositions. These two Ge-rich phases include: (1) Eu(Ga0.45(2)Ge0.55(2))2 containing two YPtAs-type motifs of EuGaGe plus one EuGe2 motif; and (2) Eu(Ga0.40(2)Ge0.60(2))2 containing one YPtAs-type motif alternating with a split site at and z=0.4798(2) with ca. 50% site occupancy by Ga and Ge along the c-axis. Magnetic susceptibilities of three Eu(Ga1−xGex)2 compounds display Curie–Weiss behavior above ca. 100 K, and show effective magnetic moments indicative of divalent Eu with a 4f7 electronic configuration, consistent with. X-ray absorption spectra (XAS). Density of states (DOS) and crystal orbital Hamilton population (COHP) analyses, based on first principles electronic structure calculations, rationalize the observed homogeneity ranges of the AlB2-type phases in both systems and the structural variations as a function of Tt content.  相似文献   

18.
A novel algorithm is introduced for coding all Slater determinants in the covalent space with conserved SZ, the z component of total spin S for a classical valence bond (VB) model. It effectively minimizes the search time and the storing space in the central memory of the computer. In cooperation with symmetry reductions based on molecular point group and spin inversion, the VB calculations have been extended to benzenoid hydrocarbons of up to 28 π‐electrons that have 4×107 configurations. The low‐lying states of benzenoids with 24, 26, and 28 π‐electrons have been obtained for 62 species. To rationalize the aromaticity of benzenoids in a VB scheme, the resonance energy per hexagon (REPH) is defined. A linear correlation between the REPH and the energy gap of the ground (singlet) state and the first excited (triplet) state for 89 benzenoids is established. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 856–869, 2000  相似文献   

19.
Gehlenite, Ca2Al[AlSiO7], has melilite‐type structure with space group . It contains two topologically distinct positions coordinated tetrahedrally by oxygen. One is completely occupied by Al3+, whereas the other one contains Al3+ and Si4+. Normally, the Al3+ molar fraction in the second tetrahedrally coordinated position does not exceed xAl = 0.5, i.e. the so‐called Loewenstein‐rule is obeyed. In this contribution the structural variations in the melilite‐type compounds of the compositions LaxCa2?xAl[Al1+xSi1?xO7], EuxCa2?xAl[Al1+xSi1?xO7] and ErxCa2?xAl[Al1+xSi1?xO7] are discussed. All members of the solid solution except the end‐members violate Loewenstein's rule. Rietveld refinements against X‐ray powder diffraction patterns confirm that the compounds have space group , without changes in the Wyckoff‐positions of the ions compared to gehlenite.  相似文献   

20.
Low‐lying equilibrium geometric structures of AlnN (n = 1–12) clusters obtained by an all‐electron linear combination of atomic orbital approach, within spin‐polarized density functional theory, are reported. The binding energy, dissociation energy, and stability of these clusters are studied within the local spin density approximation (LSDA) and the three‐parameter hybrid generalized gradient approximation (GGA) due to Becke–Lee–Yang–Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static dipole polarizabilities are calculated for the ground‐state structures within the GGA. It is observed that symmetric structures with the nitrogen atom occupying the internal position are lowest‐energy geometries. Generalized gradient approximation extends bond lengths as compared with the LSDA lengths. The odd–even oscillations in the dissociation energy, the second differences in energy, the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps, the ionization potential, the electron affinity, and the hardness are more pronounced within the GGA. The stability analysis based on the energies clearly shows the Al7N cluster to be endowed with special stability. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号