首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we consider those graphs that have maximum degree at least 1/k times their order, where k is a (small) positive integer. A result of Hajnal and Szemerédi concerning equitable vertex-colorings and an adaptation of the standard proof of Vizing's Theorem are used to show that if the maximum degree of a graph G satisfies Δ(G) ≥ |V(G)/k, then X″(G) ≤ Δ(G) + 2k + 1. This upper bound is an improvement on the currently available upper bounds for dense graphs having large order.  相似文献   

2.
The skewness of a graph G is the minimum number of edges in G whose removal results in a planar graph. In this paper, we determine the skewness of the generalized Petersen graph P(4k, k) and hence a lower bound for the crossing number of P(4k, k). In addition, an upper bound for the crossing number of P(4k, k) is also given.  相似文献   

3.
Upper bounds are placed on the order of a k-regular m-connected graph G that produce a lower bound on the number of independent edges in G. As a corollary, we obtain the order of a smallest k-regular m-connected graph which has no 1-factor.  相似文献   

4.
We consider the problem of finding a smallest set of edges whose addition four-connects a triconnected graph. This is a fundamental graph-theoretic problem that has applications in designing reliable networks and improving statistical database security. We present an O(n · α(m, n) + m)-time algorithm for four-connecting an undirected graph G that is triconnected by adding the smallest number of edges, where n and m are the number of vertices and edges in G, respectively, and α(m, n) is the inverse Ackermann function. This is the first polynomial time algorithm to solve this problem exactly.In deriving our algorithm, we present a new lower bound for the number of edges needed to four-connect a triconnected graph. The form of this lower bound is different from the form of the lower bound known for biconnectivity augmentation and triconnectivity augmentation. Our new lower bound applies for arbitrary k and gives a tighter lower bound than the one known earlier for the number of edges needed to k-connect a (k − 1)-connected graph. For k = 4, we show that this lower bound is tight by giving an efficient algorithm to find a set of edges whose size equals the new lower bound and whose addition four-connects the input triconnected graph.  相似文献   

5.
Two variations of set intersection representation are investigated and upper and lower bounds on the minimum number of labels with which a graph may be represented are found that hold for almost all graphs. Specifically, if θk(G) is defined to be the minimum number of labels with which G may be represented using the rule that two vertices are adjacent if and only if they share at least k labels, there exist positive constants ck and c′k such that almost every graph G on n vertices satisfies Changing the representation only slightly by defining θ;odd (G) to be the minimum number of labels with which G can be represented using the rule that two vertices are adjacent if and only if they share an odd number of labels results in quite different behavior. Namely, almost every graph G satisfies Furthermore, the upper bound on θodd(G) holds for every graph. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
An edge cut of a connected graph is called restricted if it separates this graph into components each having order at least 2; a graph G is super restricted edge connected if GS contains an isolated edge for every minimum restricted edge cut S of G. It is proved in this paper that k-regular connected graph G is super restricted edge connected if k > |V(G)|/2+1. The lower bound on k is exemplified to be sharp to some extent. With this observation, we determined the number of edge cuts of size at most 2k−2 of these graphs. Supported by NNSF of China (10271105); Ministry of Science and Technology of Fujian (2003J036); Education Ministry of Fujian (JA03147)  相似文献   

7.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

8.
 We say that a graph G is Class 0 if its pebbling number is exactly equal to its number of vertices. For a positive integer d, let k(d) denote the least positive integer so that every graph G with diameter at most d and connectivity at least k(d) is Class 0. The existence of the function k was conjectured by Clarke, Hochberg and Hurlbert, who showed that if the function k exists, then it must satisfy k(d)=Ω(2 d /d). In this note, we show that k exists and satisfies k(d)=O(2 2d ). We also apply this result to improve the upper bound on the random graph threshold of the Class 0 property. Received: April 19, 1999 Final version received: February 15, 2000  相似文献   

9.
A lower bound is established on the number of edges in a maximum k-colorable subgraph of a loopless graph G. For the special case of 3-regular graphs, lower bounds are also determined on the maximum number of edges in a bipartite subgraph whose color classes are of equal size.  相似文献   

10.
Sharp lower bounds for the point connectivity and line connectivity of the line graph L(G) and the total graph T(G) of a graph G are determined. The lower bounds are expressed in terms of the point connectivity k, line connectivity λ, and minimum degree δ of G. It is also shown that 2λ is an upper bound for k(T(G)) and that λ(T(G))= 2δ = δ(T(G)). In each case the realizable values beyond the lower bound are determined.  相似文献   

11.
Let G be a simple undirected graph which has p vertices and is rooted at x. Informally, the rotation number h(G, x) of this rooted graph is the minimum number of edges in a p-vertex graph F, such that for each vertex v of F, there exists a copy of G in F with the root x at v. In this paper, we calculate a lower bound for the rotation number of the graph which is the disjoint union of circuits Ck, Ce where 4 ? k < ?, give infinite classes where this bound is exact, and obtain classes of rotation numbers for the case k = 4.  相似文献   

12.
 Given a graph G with n vertices and stability number α(G), Turán's Theorem gives a lower bound on the number of edges in G. Furthermore, Turán has proved that the lower bound is only attained if G is the union of α(G) disjoint balanced cliques. We prove a similar result for the 2-stability number α2(G) of G, which is defined as the largest number of vertices in a 2-colorable subgraph of G. Given a graph G with n vertices and 2-stability number α2(G), we give a lower bound on the number of edges in G and characterize the graphs for which this bound is attained. These graphs are the union of isolated vertices and disjoint balanced cliques. We then derive lower bounds on the 2-stability number, and finally discuss the extension of Turán's Theorem to the q-stability number, for q>2. Received: July 21, 1999 Final version received: August 22, 2000 Present address: GERAD, 3000 ch. de la Cote-Ste-Catherine, Montreal, Quebec H3T 2A7, Canada. e-mail: Alain.Hertz@gerad.ca  相似文献   

13.
Let r(k) denote the least integer n-such that for any graph G on n vertices either G or its complement G contains a complete graph Kk on k vertices. in this paper, we prove the following lower bound for the Ramsey number r(k) by explicit construction: r(k) ≥ exp (c(Log k)4/3[(log log k)1/3] for some constant c> 0.  相似文献   

14.
We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph G is called the localization number and is written as ζ(G). We settle a conjecture of Bosek et al by providing an upper bound on the chromatic number as a function of the localization number. In particular, we show that every graph with ζ(G) ≤ k has degeneracy less than 3k and, consequently, satisfies χ(G) ≤ 3ζ(G). We show further that this degeneracy bound is tight. We also prove that the localization number is at most 2 in outerplanar graphs, and we determine, up to an additive constant, the localization number of hypercubes.  相似文献   

15.
Let G be a connected graph with least eigenvalue –2, of multiplicity k. A star complement for –2 in G is an induced subgraph H = GX such that |X| = k and –2 is not an eigenvalue of H. In the case that G is a generalized line graph, a characterization of such subgraphs is used to decribe the eigenspace of –2. In some instances, G itself can be characterized by a star complement. If G is not a generalized line graph, G is an exceptional graph, and in this case it is shown how a star complement can be used to construct G without recourse to root systems.  相似文献   

16.
Given a graph G with n vertices, we call ck(G) the minimum number of elementary cycles of length at most k necessary to cover the vertices of G. We bound ck(G) from the minimum degree and the order of the graph.  相似文献   

17.
A star coloring of an undirected graph G is a proper vertex coloring of G (i.e., no two adjacent vertices are assigned the same color) such that no path on four vertices is 2‐colored. The star chromatic number of G is the smallest integer k for which G admits a star coloring with k colors. In this paper, we prove that every subcubic graph is 6‐star‐colorable. Moreover, the upper bound 6 is best possible, based on the example constructed by Fertin, Raspaud, and Reed (J Graph Theory 47(3) (2004), 140–153).  相似文献   

18.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

19.
A non-complete graph G is called an (n,k)-graph if it is n-connected but GX is not (n−|X|+1)-connected for any X V (G) with |X|≤k. Mader conjectured that for k≥3 the graph K2k+2−(1−factor) is the unique (2k,k)-graph(up to isomorphism). Here we prove this conjecture.  相似文献   

20.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号