首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I.IntroductionTilenowaroundarotatitlgcircularcylinderisacomplexunsteadyone.ItincludesmanycomplicatedtlowphenomenaSuchastheunsteadyboundarylayerseparation,thegenerationandsheddingofvorticesandtheinteractionwitllwakesetc..Therotationofacircularcylillderarounditsaxiswilldecreaseandsuppresstheflowseparationandvortexsheddingononesideofthecylinder,whileincreasinganddevelopingonanothel,side.Atransverseliftforcewillactonthecylinder,andthisphenomenoniscalledtheMagnuseffect.Themost.importantparameterf…  相似文献   

2.
绕旋转圆柱流动涡尾流结构和临界状态特性   总被引:1,自引:1,他引:1  
采用作者提出的基于区域分解,有限差分法与涡法杂交的数值方法,结合高阶隐式差分格式,和以修正的不完全LU分解为预处理器的共轭梯度法作求解器,系统地研究了雷诺数Re=1000,旋转速度比α∈(0.5,3.25)范围内,绕旋转圆柱从突然起到充分发展,长时间内尾流旋涡结构和阻力,升力系数的变化规律,计算所得流动图案与实验流场显示符合很好。数值试验证帝了临界状态的存在,并首次给出了临界状态时的旋涡结构特性。  相似文献   

3.
A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme (MILU-CG). The effects of surface suction or blowing ' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen , can reduce the drag force significantly , too.  相似文献   

4.
A new hybrid model, which is based on domain decomposition and proposed by the authors, is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2−18) respectively. The vortex motion patterns in asymmetric regime, single pair (or transverse) regime and double pair (or diagonal) regime are successfully simulated. The calculated drag and inertial force coefficients are in better agreement with experimental data than other recent computational results. The project supported by the National Natural Science Foundations of China and the LNM, Institute of Mechanics, Academia Sinica  相似文献   

5.
圆柱绕流涡脱落诱发较大的振动和声,如何有效地抑制值得关注.利用大涡模拟技术求解了Navier-Stokes方程,得到了涡脱落频率,升力脉动幅值及平均阻力系数.计算表明二维模拟不能体现流动基本特征,三维计算与实验吻合较好.为了抑制涡脱落,在直径为D的圆柱表面装入间距为1D,直径为0.0167D的O型环.通过升力、速度谱分析以及柱向横截面流场分析可知,在光滑圆柱外表面加入O型环能诱发流体边界层分离,有效地抑制涡脱落现象,升力脉动和观测点速度脉动幅值几乎完全消失,阻力系数也略微降低,适合在实际工程中采用.  相似文献   

6.
On the topological bifurcation of flows around a rotating circular cylinder   总被引:1,自引:0,他引:1  
Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Reslts show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds numberRe and rotation parameter α, is built by a kinematic analysis of the steady flow fields. The project supported by the National Natural Science Foundation of China  相似文献   

7.
In the present paper the mechanism involved in vortex shedding flows is investigated in detail. In the early stage of the unsteady separated flow the interaction between secondary vortices and primary vortices is quite strong. In the later stage of the flow, corresponding to the vortex shedding the recirculating flow region on each side of the aft body goes through such a cycle: growth-contraction-growth, the secondary separation occurs periodically rather than continuously. The reduction of circulation is taken into account in three cases with different decay factors to study its influence on the prediction of main flow characteristics. Results show that to simulate vortex shedding flow it is necessary to include the reduction of circulation to bring the calculated results into good agreement with experiments. An improved discrete vortex model is suggested in which both the secondary separation and the reduction are incorporated. The processes of vortex shedding, the forces prediction and other flow characteristics are given and some discussions are made. Porject is supported by National Natural Science Foundation of China.  相似文献   

8.
A numerical study is made of the unsteady two‐dimensional, incompressible flow past an impulsively started translating and rotating circular cylinder. The Reynolds number (Re) and the rotating‐to‐translating speed ratio (α) are two controlled parameters, and the influence of their different combinations on vortex shedding from the cylinder is investigated by the numerical scheme sketched below. Associated with the streamfunction (ψ)–vorticity (ω) formulation of the Navier–Stokes equations, the Poisson equation for ψ is solved by a Fourier/finite‐analytic, separation of variable approach. This approach allows one to attenuate the artificial far‐field boundary, and also yields a global conditioning on the wall vorticity in response to the no‐slip condition. As for the vorticity transport equation, spatial discretization is done by means of finite difference in which the convection terms are handled with the aid of an ENO (essentially non‐oscillatory)‐like data reconstruction process. Finally, the interior vorticity is updated by an explicit, second‐order Runge–Kutta method. Present computations fall into two categories. One with Re=103 and α≤3; the other with Re=104 and α≤2. Comparisons with other numerical or physical experiments are included. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Adjoint formulation is employed for the optimal control of flow around a rotating cylinder, governed by the unsteady Navier–Stokes equations. The main objective consists of suppressing Karman vortex shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can be constant in time or time‐dependent. Since the numerical control problem is ill‐posed, regularization is employed. An empirical logarithmic law relating the regularization coefficient to the Reynolds number was derived for 60?Re?140. Optimal values of the angular velocity of the cylinder are obtained for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational optimal control method agree with previously obtained experimental and numerical observations. A significant reduction of the amplitude of the variation of the drag coefficient is obtained for the optimized values of the rotation rate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we investigate the dynamics of the near wake in a turbulent flow going past a circular cylinder with/without particles at a moderate Reynolds number using a direct numerical simulation method. High-order finite-deference schemes are applied to solve for the bulk fluid properties, and a Lagrangian approach is adopted to track the individual particles. The single-phase flow is analysed and validated using previous experimental data. Two converged states, U- and V-shaped, are observed in the near wake, which are consistent with the experimental results. For the two-phase flow, the addition of smaller particles shortens the length of the recirculation region and causes a V-shaped profile to form behind the circular cylinder. Furthermore, the particles increase the drag force from the circular cylinder and suppress the vortex shedding frequency. An increase in the turbulent statistics in the very near wake and a decrease in the turbulent statistics further downstream are also observed.  相似文献   

11.
The effect of location of the lateral boundaries, of the computational domain, on the critical parameters for the instability of the flow past a circular cylinder is investigated. Linear stability analysis of the governing equations for incompressible flows is carried out via a stabilized finite element method to predict the primary instability of the wake. The generalized eigenvalue problem resulting from the finite element discretization of the equations is solved using a subspace iteration method to get the most unstable eigenmode. Computations are carried out for a large range of blockage, 0.005?D/H ?0.125, where D is the diameter of the cylinder and H is the lateral width of the domain. A non‐monotonic variation of the critical Re with the blockage is observed. It is found that as the blockage increases, the critical Re for the onset of the instability first decreases and then increases. However, a monotonic increase in the non‐dimensional shedding frequency at the onset of instability, with increase in blockage, is observed. The increased blockage damps out the low‐frequency modes giving way to higher frequency modes. The blockage is found to play an important role in the scatter in the data for the non‐dimensional vortex shedding frequency at the onset of the instability, from various researchers in the past. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Heng Ren  Xiyun Lu 《力学快报》2013,3(3):032007
A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.  相似文献   

13.
A numerical study on the laminar vortex shedding and wake flow due to a porous‐wrapped solid circular cylinder has been made in this paper. The cylinder is horizontally placed, and is subjected to a uniform cross flow. The aim is to control the vortex shedding and drag force through a thin porous wrapper around a solid cylinder. The flow field is investigated for a wide range of Reynolds number in the laminar regime. The flow in the porous zone is governed by the Darcy–Brinkman–Forchheimer extended model and the Navier–Stokes equations in the fluid region. A control volume approach is adopted for computation of the governing equations along with a second‐order upwind scheme, which is used to discretize the convective terms inside the fluid region. The inclusion of a thin porous wrapper produces a significant reduction in drag and damps the oscillation compared with a solid cylinder. Dependence of Strouhal number and drag coefficient on porous layer thickness at different Reynolds number is analyzed. The dependence of Strouhal number and drag on the permeability of the medium is also examined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Particle-laden water flows past a circular cylinder were numerically investigated. The discrete vortex method (DVM) was employed to evaluate the unsteady water flow fields and a Lagrangian approach was applied for tracking individual solid particles. A dispersion function was defined to represent the dispersion scale of the particle. The wake vortex patterns, the distributions and the time series of dispersion functions of particles with different Stokes numbers were obtained. Numerical results show that the particle distribution in the wake of the circular cylinder is closely related to the particle's Stokes number and the structure of wake vortices: (1) the intermediate sized particles with Stokes numbers, St, of 0.25, 1.0 and 4.0 can not enter the vortex cores and concentrate near the peripheries of the vortex structures, (2) in the circular cylinder wake, the dispersion intensity of particles decreases as St is increased from 0.25 to 4.0.  相似文献   

17.
The compressibility effect on the cylinder drag reduction due to air suction through the surface of a central body in a circular vortex cell is estimated on the basis of the solution of the steady Reynolds equations closed by the shear stress transfer model, together with the continuity, energy, and state equations.  相似文献   

18.
19.
In this paper, on the basis of Boussinesq’s shallow water theory, we establish the basic equations governing the motion of a stratified fluid, a kind of the generalized Boussinesq equations. And then by way of them, we study the weak interaction of two pairs of obliquely colliding solitary waves, give the second-order approximate solutions for wave profiles and maximum amplitudes, as well as conclude that when the included angle between the directions of propagation of impinging solitary waves is less than 120°, the effect of oblique interaction is stronger than that of the head-on one, but when the angle concerned is greater than 120°, the former is slightly weaker than the latter.  相似文献   

20.
The fine structure of the flow field of a continuously stratified fluid around a circular cylinder for small values of the Froude number was investigated in laboratory and numerical experiments. The parameters of the leading perturbation, the internal-wave field, and the cylinder wake were calculated using a two-dimensional model. The existence of the previously experimentally observed high-gradient density layers in the wake that are parallel to the flow axis was for the first time confirmed by numerical calculations. Results of the numerical and experimental studies are in good agreement with each other and with analytical models for small values of the Froude number. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 43–54, January–February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号