首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of the effect of viscous dissipative heat on two‐dimensional viscous incompressible fluid flow past a semi‐infinite vertical plate with variable surface temperature is carried out. The dimensionless governing equations are unsteady, two‐dimensional, coupled, and non‐linear governing equations. A most accurate, unconditionally stable and fast converging implicit finite‐difference scheme is used to solve the non‐dimensional governing equations. Velocity and temperature of the flow have been presented graphically for various parameters occurring in the problem. The local and average skin friction and Nusselt number are also shown graphically. It is observed that greater viscous dissipative heat causes a rise in the temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We attempt to improve accuracy in the high‐wavenumber region in DNS of incompressible wall turbulence such as found in fully developed turbulent channel flow. In particular, it is shown that the improvement of accuracy of viscous terms in the Navier–Stokes equations leads to the improvement of accuracy of higher‐order statistics and various spectra. It is emphasized that increase in required computational cost will not be crucial when incompressible flow is simulated, because the introduction of a higher‐order scheme into the viscous terms does not increase computational cost for solving the Poisson equation. We introduced fourth‐order and eighth‐order central compact schemes for discretizing the viscous terms in DNS of a fully developed turbulent channel flow. The results are compared with those using second‐order and fourth‐order central‐difference schemes applied to the viscous terms and those obtained by the spectral method. The results show that accuracy improvement of the viscous terms improve accuracy of higher‐order statistics (i.e., skewness and flatness factors of streamwise velocity fluctuation) and various spectra of velocity and pressure fluctuations in the high‐wavenumber region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The thin aspect ratio of oceanic basins is simultaneously a complication to contend with when developing ocean models and an opportunity to simplify the equations of motion. Here we discuss these two aspects of this geometric feature in the context of hydrostatic and non‐hydrostatic ocean models. A simple analysis shows that the horizontal viscous operator in the hydrostatic primitive equations plays a central role in the specification of boundary conditions on the lateral vertical surfaces bounding the domain. The asymptotic analysis shows that for very thin aspect ratios the leading‐order flow cannot be closed unless additional terms in the equations are considered, namely either the horizontal viscous forces or the non‐hydrostatic pressure forces. In either case, narrow boundary layers must be resolved in order to close the circulation properly. The computational cost increases substantially when non‐hydrostatic effects are taken into account. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Computation of the acoustic disturbances generated by unsteady low‐speed flow fields including vortices and shear layers is considered. The equations governing the generation and propagation of acoustic fluctuations are derived from a two‐step acoustic/viscous splitting technique. An optimized high order dispersion–relation–preserving scheme is used for the solution of the acoustic field. The acoustic field generated by a corotating vortex pair is obtained using the above technique. The computed sound field is compared with the existing analytic solution. Results are in good agreement with the analytic solution except near the centre of the vortices where the acoustic pressure becomes singular. The governing equations for acoustic fluctuations are then linearized and solved for the same model problem. The difference between non‐linear and linearized solutions falls below the numerical error of the simulation. However, a considerable saving in CPU time usage is achieved in solving the linearized equations. The results indicate that the linearized acoustic/viscous splitting technique for the simulation of acoustic fluctuations generation and propagation by low Mach number flow fields seems to be very promising for three‐dimensional problems involving complex geometries. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
An exact similarity solution of the compressible‐flow Navier–Stokes equations is presented, which embeds supersonic, transonic, and subsonic regions. Describing the viscous and heat‐conducting high‐gradient flow in a shock wave, the solution accommodates non‐linear temperature‐dependent viscosity as well as heat‐conduction coefficients and provides the variation of all the flow variables and their derivatives. Also presented are methods to obtain time‐dependent and/or multi‐dimensional solutions as well as verification benchmarks of increasing severity. Comparisons between the developed analytical solution and CFD solutions of the Navier–Stokes equations, with determination of convergence rates and orders of accuracy of these solutions, illustrate the utility of the developed exact solution for verification purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper looks at the unsteady three‐dimensional MHD flow of an elastico‐viscous fluid over a stretching surface. The analysis of mass transfer is also analyzed. The governing boundary layer equations are reduced into partial differential equations with three dependent variables through similarity transformations. The transformed system of equations is solved analytically by employing homotopy analysis method (HAM). Plots for various interesting parameters are presented and discussed. Numerical data for surface shear stresses and surface mass transfer in steady case are also tabulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A heterogeneous domain decomposition approach is followed to simulate the unsteady wavy flow generated by a body moving beneath a free surface. Attention being focused on complex free surface configurations, including wave‐breaking phenomena, a two‐fluid viscous flow model is used in the free surface region to capture the air–water interface (via a level‐set technique), while a potential flow approximation is adopted to describe the flow far from the interface. Two coupling strategies are investigated, differing in the transmission conditions. Both the adopted approaches make use of the inviscid velocity field as boundary condition in the Navier–Stokes solution. For validation purposes, two different two‐dimensional non‐breaking flows are simulated. Domain decomposition results are compared with both fully viscous and fully inviscid results, obtained by solving the corresponding equations in the whole fluid domain, and with available experimental data. Finally, the unsteady evolution of a steep breaking wave is followed and some of the physical phenomena, experimentally observed, are reproduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This paper applies the finite‐volume method to computations of steady flows of viscous and viscoelastic incompressible fluids in complex two and three‐dimensional geometries. The materials adopted in the study obey different constitutive laws: Newtonian, purely viscous Carreau–Yasuda as also Upper‐Convected Maxwell and Phan‐Thien/Tanner differential models, with a Williams–Landel–Ferry (WLF) equation for temperature dependence. Specific analyses are made depending on the rheological model. A staggered grid is used for discretizing the equations and unknowns. Stockage possibilities allow us to solve problems involving a great number of degrees of freedom, up to 1 500 000 unknowns with a desk computer. In relation to the fluid properties, our numerical simulations provide flow characteristics for various 2D and 3D configurations and demonstrate the possibilities of the code to solve problems involving complex nonlinear constitutive equations with thermal effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we present a stress‐based least‐squares finite‐element formulation for the solution of the Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are introduced as independent variables to make the system first order. Continuity equation becomes an algebraic equation and is eliminated from the system with suitable modifications. The h and p convergence are verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel is solved to test mass conservation. Transient flow over a backward‐facing step problem is solved on several meshes. Results are compared with that obtained using vorticity‐based first‐order formulation for both benchmark problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a new set of boundary‐domain integral equations is derived from the continuity and momentum equations for three‐dimensional viscous flows. The primary variables involved in these integral equations are velocity, traction, and pressure. The final system of equations entering the iteration procedure only involves velocities and tractions as unknowns. In the use of the continuity equation, a complex‐variable technique is used to compute the divergence of velocity for internal points, while the traction‐recovery method is adopted for boundary points. Although the derived equations are valid for steady, unsteady, compressible, and incompressible problems, the numerical implementation is only focused on steady incompressible flows. Two commonly cited numerical examples and one practical pipe flow problem are presented to validate the derived equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A fully coupled two‐dimensional subcritical and/or supercritical, viscous, free‐surface flow numerical model is developed to calculate bed variations in alluvial channels. Vertically averaged free‐surface flow equations in conjunction with sediment transport equation are numerically solved using an explicit finite‐volume scheme using transformed grid in order to handle complex geometry fluvial problems. Convergence is accelerated with use of a multi‐grid technique. Firstly the capabilities of the proposed method are demonstrated by analyzing subcritical and supercritical hydrodynamic flows. Thereafter, an analysis of one‐ and two‐dimensional flows is performed referring to aggradation and scouring. For all reported test cases the computed results compare reasonably well with measurements as well as with other numerical solutions. The method is stable, reliable and accurate handling a variety of sediment transport equations with rapid changes of sediment transport at the boundaries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This paper examines the unsteady two‐dimensional flow of a second‐grade fluid between parallel disks in the presence of an applied magnetic field. The continuity and momentum equations governing the unsteady two‐dimensional flow of a second‐grade fluid are reduced to a single differential equation through similarity transformations. The resulting differential system is computed by a homotopy analysis method. Graphical results are discussed for both suction and blowing cases. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid (Math. Probl. Eng., DOI: 10.1155/2009/603916 ). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This article discusses the application of a Lagrange multiplier‐based fictitious domain method to the numerical simulation of incompressible viscous flow modeled by the Navier–Stokes equations around moving rigid bodies; the rigid body motions are due to hydrodynamical forces and gravity. The solution method combines finite element approximations, time discretization by operator splitting and conjugate gradient algorithms for the solution of the linearly constrained quadratic minimization problems coming from the splitting method. The study concludes with the presentation of numerical results concerning four test problems, namely the simulation of an incompressible viscous flow around a NACA0012 airfoil with a fixed center but free to rotate, then the sedimentation of 200 and 1008 cylinders in a two‐dimensional channel, and finally the sedimentation of two spherical balls in a rectangular cylinder. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a numerical method for aerodynamic shape optimization problems in compressible viscous flow. It is based on simultaneous pseudo‐time stepping in which stationary states are obtained by solving the pseudo‐stationary system of equations representing the state, costate and design equations. The main advantages of this method are that it blends in nicely with previously existing pseudo‐time‐stepping methods for the state and the costate equations, that it requires no additional globalization in the design space, and that a preconditioner can be used for convergence acceleration which stems from the reduced SQP methods. For design examples of 2D problems, the overall cost of computation can be reduced to less than 2 times the forward simulation runs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the calculation of free surface flow of viscous incompressible fluid around the hull of a boat moving with rectilinear motion. An original method used to avoid a large part of the theoretical problems connected with free surface boundary conditions in three‐dimensional Navier–Stokes–Reynolds equations is proposed here. The linearised system of convective equations for velocities, pressure and free surface elevation unknowns is discretised by finite differences and two methods to solve the fully coupled resulting matrix are presented here. The non‐linear convergence of fully coupled algorithm is compared with the velocity–pressure weakly coupled algorithm SIMPLER. Turbulence is taken into account through Reynolds decomposition and k–ε or k–ω model to close the equations. These two models are implemented without wall function and numerical calculations are performed up to the viscous sub‐layer. Numerical results and comparisons with experiments are presented on the Series 60 CB=0.60 ship model for a Reynolds number Rn=4.5×106 and a Froude number Fn=0.316. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号